File:  [local] / rpl / lapack / lapack / dtgsja.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
    2:      $                   LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
    3:      $                   Q, LDQ, WORK, NCYCLE, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2.1)                                  --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *  -- April 2009                                                      --
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBQ, JOBU, JOBV
   12:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
   13:      $                   NCYCLE, P
   14:       DOUBLE PRECISION   TOLA, TOLB
   15: *     ..
   16: *     .. Array Arguments ..
   17:       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
   18:      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
   19:      $                   V( LDV, * ), WORK( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DTGSJA computes the generalized singular value decomposition (GSVD)
   26: *  of two real upper triangular (or trapezoidal) matrices A and B.
   27: *
   28: *  On entry, it is assumed that matrices A and B have the following
   29: *  forms, which may be obtained by the preprocessing subroutine DGGSVP
   30: *  from a general M-by-N matrix A and P-by-N matrix B:
   31: *
   32: *               N-K-L  K    L
   33: *     A =    K ( 0    A12  A13 ) if M-K-L >= 0;
   34: *            L ( 0     0   A23 )
   35: *        M-K-L ( 0     0    0  )
   36: *
   37: *             N-K-L  K    L
   38: *     A =  K ( 0    A12  A13 ) if M-K-L < 0;
   39: *        M-K ( 0     0   A23 )
   40: *
   41: *             N-K-L  K    L
   42: *     B =  L ( 0     0   B13 )
   43: *        P-L ( 0     0    0  )
   44: *
   45: *  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
   46: *  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
   47: *  otherwise A23 is (M-K)-by-L upper trapezoidal.
   48: *
   49: *  On exit,
   50: *
   51: *              U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ),
   52: *
   53: *  where U, V and Q are orthogonal matrices, Z' denotes the transpose
   54: *  of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
   55: *  ``diagonal'' matrices, which are of the following structures:
   56: *
   57: *  If M-K-L >= 0,
   58: *
   59: *                      K  L
   60: *         D1 =     K ( I  0 )
   61: *                  L ( 0  C )
   62: *              M-K-L ( 0  0 )
   63: *
   64: *                    K  L
   65: *         D2 = L   ( 0  S )
   66: *              P-L ( 0  0 )
   67: *
   68: *                 N-K-L  K    L
   69: *    ( 0 R ) = K (  0   R11  R12 ) K
   70: *              L (  0    0   R22 ) L
   71: *
   72: *  where
   73: *
   74: *    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   75: *    S = diag( BETA(K+1),  ... , BETA(K+L) ),
   76: *    C**2 + S**2 = I.
   77: *
   78: *    R is stored in A(1:K+L,N-K-L+1:N) on exit.
   79: *
   80: *  If M-K-L < 0,
   81: *
   82: *                 K M-K K+L-M
   83: *      D1 =   K ( I  0    0   )
   84: *           M-K ( 0  C    0   )
   85: *
   86: *                   K M-K K+L-M
   87: *      D2 =   M-K ( 0  S    0   )
   88: *           K+L-M ( 0  0    I   )
   89: *             P-L ( 0  0    0   )
   90: *
   91: *                 N-K-L  K   M-K  K+L-M
   92: * ( 0 R ) =    K ( 0    R11  R12  R13  )
   93: *            M-K ( 0     0   R22  R23  )
   94: *          K+L-M ( 0     0    0   R33  )
   95: *
   96: *  where
   97: *  C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   98: *  S = diag( BETA(K+1),  ... , BETA(M) ),
   99: *  C**2 + S**2 = I.
  100: *
  101: *  R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
  102: *      (  0  R22 R23 )
  103: *  in B(M-K+1:L,N+M-K-L+1:N) on exit.
  104: *
  105: *  The computation of the orthogonal transformation matrices U, V or Q
  106: *  is optional.  These matrices may either be formed explicitly, or they
  107: *  may be postmultiplied into input matrices U1, V1, or Q1.
  108: *
  109: *  Arguments
  110: *  =========
  111: *
  112: *  JOBU    (input) CHARACTER*1
  113: *          = 'U':  U must contain an orthogonal matrix U1 on entry, and
  114: *                  the product U1*U is returned;
  115: *          = 'I':  U is initialized to the unit matrix, and the
  116: *                  orthogonal matrix U is returned;
  117: *          = 'N':  U is not computed.
  118: *
  119: *  JOBV    (input) CHARACTER*1
  120: *          = 'V':  V must contain an orthogonal matrix V1 on entry, and
  121: *                  the product V1*V is returned;
  122: *          = 'I':  V is initialized to the unit matrix, and the
  123: *                  orthogonal matrix V is returned;
  124: *          = 'N':  V is not computed.
  125: *
  126: *  JOBQ    (input) CHARACTER*1
  127: *          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
  128: *                  the product Q1*Q is returned;
  129: *          = 'I':  Q is initialized to the unit matrix, and the
  130: *                  orthogonal matrix Q is returned;
  131: *          = 'N':  Q is not computed.
  132: *
  133: *  M       (input) INTEGER
  134: *          The number of rows of the matrix A.  M >= 0.
  135: *
  136: *  P       (input) INTEGER
  137: *          The number of rows of the matrix B.  P >= 0.
  138: *
  139: *  N       (input) INTEGER
  140: *          The number of columns of the matrices A and B.  N >= 0.
  141: *
  142: *  K       (input) INTEGER
  143: *  L       (input) INTEGER
  144: *          K and L specify the subblocks in the input matrices A and B:
  145: *          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
  146: *          of A and B, whose GSVD is going to be computed by DTGSJA.
  147: *          See Further Details.
  148: *
  149: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
  150: *          On entry, the M-by-N matrix A.
  151: *          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
  152: *          matrix R or part of R.  See Purpose for details.
  153: *
  154: *  LDA     (input) INTEGER
  155: *          The leading dimension of the array A. LDA >= max(1,M).
  156: *
  157: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
  158: *          On entry, the P-by-N matrix B.
  159: *          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
  160: *          a part of R.  See Purpose for details.
  161: *
  162: *  LDB     (input) INTEGER
  163: *          The leading dimension of the array B. LDB >= max(1,P).
  164: *
  165: *  TOLA    (input) DOUBLE PRECISION
  166: *  TOLB    (input) DOUBLE PRECISION
  167: *          TOLA and TOLB are the convergence criteria for the Jacobi-
  168: *          Kogbetliantz iteration procedure. Generally, they are the
  169: *          same as used in the preprocessing step, say
  170: *              TOLA = max(M,N)*norm(A)*MAZHEPS,
  171: *              TOLB = max(P,N)*norm(B)*MAZHEPS.
  172: *
  173: *  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
  174: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
  175: *          On exit, ALPHA and BETA contain the generalized singular
  176: *          value pairs of A and B;
  177: *            ALPHA(1:K) = 1,
  178: *            BETA(1:K)  = 0,
  179: *          and if M-K-L >= 0,
  180: *            ALPHA(K+1:K+L) = diag(C),
  181: *            BETA(K+1:K+L)  = diag(S),
  182: *          or if M-K-L < 0,
  183: *            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
  184: *            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
  185: *          Furthermore, if K+L < N,
  186: *            ALPHA(K+L+1:N) = 0 and
  187: *            BETA(K+L+1:N)  = 0.
  188: *
  189: *  U       (input/output) DOUBLE PRECISION array, dimension (LDU,M)
  190: *          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
  191: *          the orthogonal matrix returned by DGGSVP).
  192: *          On exit,
  193: *          if JOBU = 'I', U contains the orthogonal matrix U;
  194: *          if JOBU = 'U', U contains the product U1*U.
  195: *          If JOBU = 'N', U is not referenced.
  196: *
  197: *  LDU     (input) INTEGER
  198: *          The leading dimension of the array U. LDU >= max(1,M) if
  199: *          JOBU = 'U'; LDU >= 1 otherwise.
  200: *
  201: *  V       (input/output) DOUBLE PRECISION array, dimension (LDV,P)
  202: *          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
  203: *          the orthogonal matrix returned by DGGSVP).
  204: *          On exit,
  205: *          if JOBV = 'I', V contains the orthogonal matrix V;
  206: *          if JOBV = 'V', V contains the product V1*V.
  207: *          If JOBV = 'N', V is not referenced.
  208: *
  209: *  LDV     (input) INTEGER
  210: *          The leading dimension of the array V. LDV >= max(1,P) if
  211: *          JOBV = 'V'; LDV >= 1 otherwise.
  212: *
  213: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
  214: *          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
  215: *          the orthogonal matrix returned by DGGSVP).
  216: *          On exit,
  217: *          if JOBQ = 'I', Q contains the orthogonal matrix Q;
  218: *          if JOBQ = 'Q', Q contains the product Q1*Q.
  219: *          If JOBQ = 'N', Q is not referenced.
  220: *
  221: *  LDQ     (input) INTEGER
  222: *          The leading dimension of the array Q. LDQ >= max(1,N) if
  223: *          JOBQ = 'Q'; LDQ >= 1 otherwise.
  224: *
  225: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
  226: *
  227: *  NCYCLE  (output) INTEGER
  228: *          The number of cycles required for convergence.
  229: *
  230: *  INFO    (output) INTEGER
  231: *          = 0:  successful exit
  232: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  233: *          = 1:  the procedure does not converge after MAXIT cycles.
  234: *
  235: *  Internal Parameters
  236: *  ===================
  237: *
  238: *  MAXIT   INTEGER
  239: *          MAXIT specifies the total loops that the iterative procedure
  240: *          may take. If after MAXIT cycles, the routine fails to
  241: *          converge, we return INFO = 1.
  242: *
  243: *  Further Details
  244: *  ===============
  245: *
  246: *  DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
  247: *  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
  248: *  matrix B13 to the form:
  249: *
  250: *           U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
  251: *
  252: *  where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
  253: *  of Z.  C1 and S1 are diagonal matrices satisfying
  254: *
  255: *                C1**2 + S1**2 = I,
  256: *
  257: *  and R1 is an L-by-L nonsingular upper triangular matrix.
  258: *
  259: *  =====================================================================
  260: *
  261: *     .. Parameters ..
  262:       INTEGER            MAXIT
  263:       PARAMETER          ( MAXIT = 40 )
  264:       DOUBLE PRECISION   ZERO, ONE
  265:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  266: *     ..
  267: *     .. Local Scalars ..
  268: *
  269:       LOGICAL            INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
  270:       INTEGER            I, J, KCYCLE
  271:       DOUBLE PRECISION   A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, ERROR,
  272:      $                   GAMMA, RWK, SNQ, SNU, SNV, SSMIN
  273: *     ..
  274: *     .. External Functions ..
  275:       LOGICAL            LSAME
  276:       EXTERNAL           LSAME
  277: *     ..
  278: *     .. External Subroutines ..
  279:       EXTERNAL           DCOPY, DLAGS2, DLAPLL, DLARTG, DLASET, DROT,
  280:      $                   DSCAL, XERBLA
  281: *     ..
  282: *     .. Intrinsic Functions ..
  283:       INTRINSIC          ABS, MAX, MIN
  284: *     ..
  285: *     .. Executable Statements ..
  286: *
  287: *     Decode and test the input parameters
  288: *
  289:       INITU = LSAME( JOBU, 'I' )
  290:       WANTU = INITU .OR. LSAME( JOBU, 'U' )
  291: *
  292:       INITV = LSAME( JOBV, 'I' )
  293:       WANTV = INITV .OR. LSAME( JOBV, 'V' )
  294: *
  295:       INITQ = LSAME( JOBQ, 'I' )
  296:       WANTQ = INITQ .OR. LSAME( JOBQ, 'Q' )
  297: *
  298:       INFO = 0
  299:       IF( .NOT.( INITU .OR. WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  300:          INFO = -1
  301:       ELSE IF( .NOT.( INITV .OR. WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  302:          INFO = -2
  303:       ELSE IF( .NOT.( INITQ .OR. WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  304:          INFO = -3
  305:       ELSE IF( M.LT.0 ) THEN
  306:          INFO = -4
  307:       ELSE IF( P.LT.0 ) THEN
  308:          INFO = -5
  309:       ELSE IF( N.LT.0 ) THEN
  310:          INFO = -6
  311:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  312:          INFO = -10
  313:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  314:          INFO = -12
  315:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  316:          INFO = -18
  317:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  318:          INFO = -20
  319:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  320:          INFO = -22
  321:       END IF
  322:       IF( INFO.NE.0 ) THEN
  323:          CALL XERBLA( 'DTGSJA', -INFO )
  324:          RETURN
  325:       END IF
  326: *
  327: *     Initialize U, V and Q, if necessary
  328: *
  329:       IF( INITU )
  330:      $   CALL DLASET( 'Full', M, M, ZERO, ONE, U, LDU )
  331:       IF( INITV )
  332:      $   CALL DLASET( 'Full', P, P, ZERO, ONE, V, LDV )
  333:       IF( INITQ )
  334:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  335: *
  336: *     Loop until convergence
  337: *
  338:       UPPER = .FALSE.
  339:       DO 40 KCYCLE = 1, MAXIT
  340: *
  341:          UPPER = .NOT.UPPER
  342: *
  343:          DO 20 I = 1, L - 1
  344:             DO 10 J = I + 1, L
  345: *
  346:                A1 = ZERO
  347:                A2 = ZERO
  348:                A3 = ZERO
  349:                IF( K+I.LE.M )
  350:      $            A1 = A( K+I, N-L+I )
  351:                IF( K+J.LE.M )
  352:      $            A3 = A( K+J, N-L+J )
  353: *
  354:                B1 = B( I, N-L+I )
  355:                B3 = B( J, N-L+J )
  356: *
  357:                IF( UPPER ) THEN
  358:                   IF( K+I.LE.M )
  359:      $               A2 = A( K+I, N-L+J )
  360:                   B2 = B( I, N-L+J )
  361:                ELSE
  362:                   IF( K+J.LE.M )
  363:      $               A2 = A( K+J, N-L+I )
  364:                   B2 = B( J, N-L+I )
  365:                END IF
  366: *
  367:                CALL DLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
  368:      $                      CSV, SNV, CSQ, SNQ )
  369: *
  370: *              Update (K+I)-th and (K+J)-th rows of matrix A: U'*A
  371: *
  372:                IF( K+J.LE.M )
  373:      $            CALL DROT( L, A( K+J, N-L+1 ), LDA, A( K+I, N-L+1 ),
  374:      $                       LDA, CSU, SNU )
  375: *
  376: *              Update I-th and J-th rows of matrix B: V'*B
  377: *
  378:                CALL DROT( L, B( J, N-L+1 ), LDB, B( I, N-L+1 ), LDB,
  379:      $                    CSV, SNV )
  380: *
  381: *              Update (N-L+I)-th and (N-L+J)-th columns of matrices
  382: *              A and B: A*Q and B*Q
  383: *
  384:                CALL DROT( MIN( K+L, M ), A( 1, N-L+J ), 1,
  385:      $                    A( 1, N-L+I ), 1, CSQ, SNQ )
  386: *
  387:                CALL DROT( L, B( 1, N-L+J ), 1, B( 1, N-L+I ), 1, CSQ,
  388:      $                    SNQ )
  389: *
  390:                IF( UPPER ) THEN
  391:                   IF( K+I.LE.M )
  392:      $               A( K+I, N-L+J ) = ZERO
  393:                   B( I, N-L+J ) = ZERO
  394:                ELSE
  395:                   IF( K+J.LE.M )
  396:      $               A( K+J, N-L+I ) = ZERO
  397:                   B( J, N-L+I ) = ZERO
  398:                END IF
  399: *
  400: *              Update orthogonal matrices U, V, Q, if desired.
  401: *
  402:                IF( WANTU .AND. K+J.LE.M )
  403:      $            CALL DROT( M, U( 1, K+J ), 1, U( 1, K+I ), 1, CSU,
  404:      $                       SNU )
  405: *
  406:                IF( WANTV )
  407:      $            CALL DROT( P, V( 1, J ), 1, V( 1, I ), 1, CSV, SNV )
  408: *
  409:                IF( WANTQ )
  410:      $            CALL DROT( N, Q( 1, N-L+J ), 1, Q( 1, N-L+I ), 1, CSQ,
  411:      $                       SNQ )
  412: *
  413:    10       CONTINUE
  414:    20    CONTINUE
  415: *
  416:          IF( .NOT.UPPER ) THEN
  417: *
  418: *           The matrices A13 and B13 were lower triangular at the start
  419: *           of the cycle, and are now upper triangular.
  420: *
  421: *           Convergence test: test the parallelism of the corresponding
  422: *           rows of A and B.
  423: *
  424:             ERROR = ZERO
  425:             DO 30 I = 1, MIN( L, M-K )
  426:                CALL DCOPY( L-I+1, A( K+I, N-L+I ), LDA, WORK, 1 )
  427:                CALL DCOPY( L-I+1, B( I, N-L+I ), LDB, WORK( L+1 ), 1 )
  428:                CALL DLAPLL( L-I+1, WORK, 1, WORK( L+1 ), 1, SSMIN )
  429:                ERROR = MAX( ERROR, SSMIN )
  430:    30       CONTINUE
  431: *
  432:             IF( ABS( ERROR ).LE.MIN( TOLA, TOLB ) )
  433:      $         GO TO 50
  434:          END IF
  435: *
  436: *        End of cycle loop
  437: *
  438:    40 CONTINUE
  439: *
  440: *     The algorithm has not converged after MAXIT cycles.
  441: *
  442:       INFO = 1
  443:       GO TO 100
  444: *
  445:    50 CONTINUE
  446: *
  447: *     If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
  448: *     Compute the generalized singular value pairs (ALPHA, BETA), and
  449: *     set the triangular matrix R to array A.
  450: *
  451:       DO 60 I = 1, K
  452:          ALPHA( I ) = ONE
  453:          BETA( I ) = ZERO
  454:    60 CONTINUE
  455: *
  456:       DO 70 I = 1, MIN( L, M-K )
  457: *
  458:          A1 = A( K+I, N-L+I )
  459:          B1 = B( I, N-L+I )
  460: *
  461:          IF( A1.NE.ZERO ) THEN
  462:             GAMMA = B1 / A1
  463: *
  464: *           change sign if necessary
  465: *
  466:             IF( GAMMA.LT.ZERO ) THEN
  467:                CALL DSCAL( L-I+1, -ONE, B( I, N-L+I ), LDB )
  468:                IF( WANTV )
  469:      $            CALL DSCAL( P, -ONE, V( 1, I ), 1 )
  470:             END IF
  471: *
  472:             CALL DLARTG( ABS( GAMMA ), ONE, BETA( K+I ), ALPHA( K+I ),
  473:      $                   RWK )
  474: *
  475:             IF( ALPHA( K+I ).GE.BETA( K+I ) ) THEN
  476:                CALL DSCAL( L-I+1, ONE / ALPHA( K+I ), A( K+I, N-L+I ),
  477:      $                     LDA )
  478:             ELSE
  479:                CALL DSCAL( L-I+1, ONE / BETA( K+I ), B( I, N-L+I ),
  480:      $                     LDB )
  481:                CALL DCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
  482:      $                     LDA )
  483:             END IF
  484: *
  485:          ELSE
  486: *
  487:             ALPHA( K+I ) = ZERO
  488:             BETA( K+I ) = ONE
  489:             CALL DCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
  490:      $                  LDA )
  491: *
  492:          END IF
  493: *
  494:    70 CONTINUE
  495: *
  496: *     Post-assignment
  497: *
  498:       DO 80 I = M + 1, K + L
  499:          ALPHA( I ) = ZERO
  500:          BETA( I ) = ONE
  501:    80 CONTINUE
  502: *
  503:       IF( K+L.LT.N ) THEN
  504:          DO 90 I = K + L + 1, N
  505:             ALPHA( I ) = ZERO
  506:             BETA( I ) = ZERO
  507:    90    CONTINUE
  508:       END IF
  509: *
  510:   100 CONTINUE
  511:       NCYCLE = KCYCLE
  512:       RETURN
  513: *
  514: *     End of DTGSJA
  515: *
  516:       END

CVSweb interface <joel.bertrand@systella.fr>