--- rpl/lapack/lapack/dtgsja.f 2011/07/22 07:38:12 1.8 +++ rpl/lapack/lapack/dtgsja.f 2011/11/21 20:43:06 1.9 @@ -1,11 +1,387 @@ +*> \brief \b DTGSJA +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DTGSJA + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, +* LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, +* Q, LDQ, WORK, NCYCLE, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER JOBQ, JOBU, JOBV +* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, +* $ NCYCLE, P +* DOUBLE PRECISION TOLA, TOLB +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ), +* $ BETA( * ), Q( LDQ, * ), U( LDU, * ), +* $ V( LDV, * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DTGSJA computes the generalized singular value decomposition (GSVD) +*> of two real upper triangular (or trapezoidal) matrices A and B. +*> +*> On entry, it is assumed that matrices A and B have the following +*> forms, which may be obtained by the preprocessing subroutine DGGSVP +*> from a general M-by-N matrix A and P-by-N matrix B: +*> +*> N-K-L K L +*> A = K ( 0 A12 A13 ) if M-K-L >= 0; +*> L ( 0 0 A23 ) +*> M-K-L ( 0 0 0 ) +*> +*> N-K-L K L +*> A = K ( 0 A12 A13 ) if M-K-L < 0; +*> M-K ( 0 0 A23 ) +*> +*> N-K-L K L +*> B = L ( 0 0 B13 ) +*> P-L ( 0 0 0 ) +*> +*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular +*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, +*> otherwise A23 is (M-K)-by-L upper trapezoidal. +*> +*> On exit, +*> +*> U**T *A*Q = D1*( 0 R ), V**T *B*Q = D2*( 0 R ), +*> +*> where U, V and Q are orthogonal matrices. +*> R is a nonsingular upper triangular matrix, and D1 and D2 are +*> ``diagonal'' matrices, which are of the following structures: +*> +*> If M-K-L >= 0, +*> +*> K L +*> D1 = K ( I 0 ) +*> L ( 0 C ) +*> M-K-L ( 0 0 ) +*> +*> K L +*> D2 = L ( 0 S ) +*> P-L ( 0 0 ) +*> +*> N-K-L K L +*> ( 0 R ) = K ( 0 R11 R12 ) K +*> L ( 0 0 R22 ) L +*> +*> where +*> +*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), +*> S = diag( BETA(K+1), ... , BETA(K+L) ), +*> C**2 + S**2 = I. +*> +*> R is stored in A(1:K+L,N-K-L+1:N) on exit. +*> +*> If M-K-L < 0, +*> +*> K M-K K+L-M +*> D1 = K ( I 0 0 ) +*> M-K ( 0 C 0 ) +*> +*> K M-K K+L-M +*> D2 = M-K ( 0 S 0 ) +*> K+L-M ( 0 0 I ) +*> P-L ( 0 0 0 ) +*> +*> N-K-L K M-K K+L-M +*> ( 0 R ) = K ( 0 R11 R12 R13 ) +*> M-K ( 0 0 R22 R23 ) +*> K+L-M ( 0 0 0 R33 ) +*> +*> where +*> C = diag( ALPHA(K+1), ... , ALPHA(M) ), +*> S = diag( BETA(K+1), ... , BETA(M) ), +*> C**2 + S**2 = I. +*> +*> R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored +*> ( 0 R22 R23 ) +*> in B(M-K+1:L,N+M-K-L+1:N) on exit. +*> +*> The computation of the orthogonal transformation matrices U, V or Q +*> is optional. These matrices may either be formed explicitly, or they +*> may be postmultiplied into input matrices U1, V1, or Q1. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] JOBU +*> \verbatim +*> JOBU is CHARACTER*1 +*> = 'U': U must contain an orthogonal matrix U1 on entry, and +*> the product U1*U is returned; +*> = 'I': U is initialized to the unit matrix, and the +*> orthogonal matrix U is returned; +*> = 'N': U is not computed. +*> \endverbatim +*> +*> \param[in] JOBV +*> \verbatim +*> JOBV is CHARACTER*1 +*> = 'V': V must contain an orthogonal matrix V1 on entry, and +*> the product V1*V is returned; +*> = 'I': V is initialized to the unit matrix, and the +*> orthogonal matrix V is returned; +*> = 'N': V is not computed. +*> \endverbatim +*> +*> \param[in] JOBQ +*> \verbatim +*> JOBQ is CHARACTER*1 +*> = 'Q': Q must contain an orthogonal matrix Q1 on entry, and +*> the product Q1*Q is returned; +*> = 'I': Q is initialized to the unit matrix, and the +*> orthogonal matrix Q is returned; +*> = 'N': Q is not computed. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] P +*> \verbatim +*> P is INTEGER +*> The number of rows of the matrix B. P >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrices A and B. N >= 0. +*> \endverbatim +*> +*> \param[in] K +*> \verbatim +*> K is INTEGER +*> \endverbatim +*> +*> \param[in] L +*> \verbatim +*> L is INTEGER +*> +*> K and L specify the subblocks in the input matrices A and B: +*> A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) +*> of A and B, whose GSVD is going to be computed by DTGSJA. +*> See Further Details. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the M-by-N matrix A. +*> On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular +*> matrix R or part of R. See Purpose for details. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension (LDB,N) +*> On entry, the P-by-N matrix B. +*> On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains +*> a part of R. See Purpose for details. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,P). +*> \endverbatim +*> +*> \param[in] TOLA +*> \verbatim +*> TOLA is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] TOLB +*> \verbatim +*> TOLB is DOUBLE PRECISION +*> +*> TOLA and TOLB are the convergence criteria for the Jacobi- +*> Kogbetliantz iteration procedure. Generally, they are the +*> same as used in the preprocessing step, say +*> TOLA = max(M,N)*norm(A)*MAZHEPS, +*> TOLB = max(P,N)*norm(B)*MAZHEPS. +*> \endverbatim +*> +*> \param[out] ALPHA +*> \verbatim +*> ALPHA is DOUBLE PRECISION array, dimension (N) +*> \endverbatim +*> +*> \param[out] BETA +*> \verbatim +*> BETA is DOUBLE PRECISION array, dimension (N) +*> +*> On exit, ALPHA and BETA contain the generalized singular +*> value pairs of A and B; +*> ALPHA(1:K) = 1, +*> BETA(1:K) = 0, +*> and if M-K-L >= 0, +*> ALPHA(K+1:K+L) = diag(C), +*> BETA(K+1:K+L) = diag(S), +*> or if M-K-L < 0, +*> ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 +*> BETA(K+1:M) = S, BETA(M+1:K+L) = 1. +*> Furthermore, if K+L < N, +*> ALPHA(K+L+1:N) = 0 and +*> BETA(K+L+1:N) = 0. +*> \endverbatim +*> +*> \param[in,out] U +*> \verbatim +*> U is DOUBLE PRECISION array, dimension (LDU,M) +*> On entry, if JOBU = 'U', U must contain a matrix U1 (usually +*> the orthogonal matrix returned by DGGSVP). +*> On exit, +*> if JOBU = 'I', U contains the orthogonal matrix U; +*> if JOBU = 'U', U contains the product U1*U. +*> If JOBU = 'N', U is not referenced. +*> \endverbatim +*> +*> \param[in] LDU +*> \verbatim +*> LDU is INTEGER +*> The leading dimension of the array U. LDU >= max(1,M) if +*> JOBU = 'U'; LDU >= 1 otherwise. +*> \endverbatim +*> +*> \param[in,out] V +*> \verbatim +*> V is DOUBLE PRECISION array, dimension (LDV,P) +*> On entry, if JOBV = 'V', V must contain a matrix V1 (usually +*> the orthogonal matrix returned by DGGSVP). +*> On exit, +*> if JOBV = 'I', V contains the orthogonal matrix V; +*> if JOBV = 'V', V contains the product V1*V. +*> If JOBV = 'N', V is not referenced. +*> \endverbatim +*> +*> \param[in] LDV +*> \verbatim +*> LDV is INTEGER +*> The leading dimension of the array V. LDV >= max(1,P) if +*> JOBV = 'V'; LDV >= 1 otherwise. +*> \endverbatim +*> +*> \param[in,out] Q +*> \verbatim +*> Q is DOUBLE PRECISION array, dimension (LDQ,N) +*> On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually +*> the orthogonal matrix returned by DGGSVP). +*> On exit, +*> if JOBQ = 'I', Q contains the orthogonal matrix Q; +*> if JOBQ = 'Q', Q contains the product Q1*Q. +*> If JOBQ = 'N', Q is not referenced. +*> \endverbatim +*> +*> \param[in] LDQ +*> \verbatim +*> LDQ is INTEGER +*> The leading dimension of the array Q. LDQ >= max(1,N) if +*> JOBQ = 'Q'; LDQ >= 1 otherwise. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (2*N) +*> \endverbatim +*> +*> \param[out] NCYCLE +*> \verbatim +*> NCYCLE is INTEGER +*> The number of cycles required for convergence. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value. +*> = 1: the procedure does not converge after MAXIT cycles. +*> \endverbatim +*> +*> \verbatim +*> Internal Parameters +*> =================== +*> +*> MAXIT INTEGER +*> MAXIT specifies the total loops that the iterative procedure +*> may take. If after MAXIT cycles, the routine fails to +*> converge, we return INFO = 1. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERcomputational +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce +*> min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L +*> matrix B13 to the form: +*> +*> U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1, +*> +*> where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose +*> of Z. C1 and S1 are diagonal matrices satisfying +*> +*> C1**2 + S1**2 = I, +*> +*> and R1 is an L-by-L nonsingular upper triangular matrix. +*> \endverbatim +*> +* ===================================================================== SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, $ LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, $ Q, LDQ, WORK, NCYCLE, INFO ) * -* -- LAPACK routine (version 3.3.1) -- +* -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -- April 2009 -- +* November 2011 * * .. Scalar Arguments .. CHARACTER JOBQ, JOBU, JOBV @@ -19,243 +395,6 @@ $ V( LDV, * ), WORK( * ) * .. * -* Purpose -* ======= -* -* DTGSJA computes the generalized singular value decomposition (GSVD) -* of two real upper triangular (or trapezoidal) matrices A and B. -* -* On entry, it is assumed that matrices A and B have the following -* forms, which may be obtained by the preprocessing subroutine DGGSVP -* from a general M-by-N matrix A and P-by-N matrix B: -* -* N-K-L K L -* A = K ( 0 A12 A13 ) if M-K-L >= 0; -* L ( 0 0 A23 ) -* M-K-L ( 0 0 0 ) -* -* N-K-L K L -* A = K ( 0 A12 A13 ) if M-K-L < 0; -* M-K ( 0 0 A23 ) -* -* N-K-L K L -* B = L ( 0 0 B13 ) -* P-L ( 0 0 0 ) -* -* where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular -* upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, -* otherwise A23 is (M-K)-by-L upper trapezoidal. -* -* On exit, -* -* U**T *A*Q = D1*( 0 R ), V**T *B*Q = D2*( 0 R ), -* -* where U, V and Q are orthogonal matrices. -* R is a nonsingular upper triangular matrix, and D1 and D2 are -* ``diagonal'' matrices, which are of the following structures: -* -* If M-K-L >= 0, -* -* K L -* D1 = K ( I 0 ) -* L ( 0 C ) -* M-K-L ( 0 0 ) -* -* K L -* D2 = L ( 0 S ) -* P-L ( 0 0 ) -* -* N-K-L K L -* ( 0 R ) = K ( 0 R11 R12 ) K -* L ( 0 0 R22 ) L -* -* where -* -* C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), -* S = diag( BETA(K+1), ... , BETA(K+L) ), -* C**2 + S**2 = I. -* -* R is stored in A(1:K+L,N-K-L+1:N) on exit. -* -* If M-K-L < 0, -* -* K M-K K+L-M -* D1 = K ( I 0 0 ) -* M-K ( 0 C 0 ) -* -* K M-K K+L-M -* D2 = M-K ( 0 S 0 ) -* K+L-M ( 0 0 I ) -* P-L ( 0 0 0 ) -* -* N-K-L K M-K K+L-M -* ( 0 R ) = K ( 0 R11 R12 R13 ) -* M-K ( 0 0 R22 R23 ) -* K+L-M ( 0 0 0 R33 ) -* -* where -* C = diag( ALPHA(K+1), ... , ALPHA(M) ), -* S = diag( BETA(K+1), ... , BETA(M) ), -* C**2 + S**2 = I. -* -* R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored -* ( 0 R22 R23 ) -* in B(M-K+1:L,N+M-K-L+1:N) on exit. -* -* The computation of the orthogonal transformation matrices U, V or Q -* is optional. These matrices may either be formed explicitly, or they -* may be postmultiplied into input matrices U1, V1, or Q1. -* -* Arguments -* ========= -* -* JOBU (input) CHARACTER*1 -* = 'U': U must contain an orthogonal matrix U1 on entry, and -* the product U1*U is returned; -* = 'I': U is initialized to the unit matrix, and the -* orthogonal matrix U is returned; -* = 'N': U is not computed. -* -* JOBV (input) CHARACTER*1 -* = 'V': V must contain an orthogonal matrix V1 on entry, and -* the product V1*V is returned; -* = 'I': V is initialized to the unit matrix, and the -* orthogonal matrix V is returned; -* = 'N': V is not computed. -* -* JOBQ (input) CHARACTER*1 -* = 'Q': Q must contain an orthogonal matrix Q1 on entry, and -* the product Q1*Q is returned; -* = 'I': Q is initialized to the unit matrix, and the -* orthogonal matrix Q is returned; -* = 'N': Q is not computed. -* -* M (input) INTEGER -* The number of rows of the matrix A. M >= 0. -* -* P (input) INTEGER -* The number of rows of the matrix B. P >= 0. -* -* N (input) INTEGER -* The number of columns of the matrices A and B. N >= 0. -* -* K (input) INTEGER -* L (input) INTEGER -* K and L specify the subblocks in the input matrices A and B: -* A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) -* of A and B, whose GSVD is going to be computed by DTGSJA. -* See Further Details. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the M-by-N matrix A. -* On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular -* matrix R or part of R. See Purpose for details. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* B (input/output) DOUBLE PRECISION array, dimension (LDB,N) -* On entry, the P-by-N matrix B. -* On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains -* a part of R. See Purpose for details. -* -* LDB (input) INTEGER -* The leading dimension of the array B. LDB >= max(1,P). -* -* TOLA (input) DOUBLE PRECISION -* TOLB (input) DOUBLE PRECISION -* TOLA and TOLB are the convergence criteria for the Jacobi- -* Kogbetliantz iteration procedure. Generally, they are the -* same as used in the preprocessing step, say -* TOLA = max(M,N)*norm(A)*MAZHEPS, -* TOLB = max(P,N)*norm(B)*MAZHEPS. -* -* ALPHA (output) DOUBLE PRECISION array, dimension (N) -* BETA (output) DOUBLE PRECISION array, dimension (N) -* On exit, ALPHA and BETA contain the generalized singular -* value pairs of A and B; -* ALPHA(1:K) = 1, -* BETA(1:K) = 0, -* and if M-K-L >= 0, -* ALPHA(K+1:K+L) = diag(C), -* BETA(K+1:K+L) = diag(S), -* or if M-K-L < 0, -* ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 -* BETA(K+1:M) = S, BETA(M+1:K+L) = 1. -* Furthermore, if K+L < N, -* ALPHA(K+L+1:N) = 0 and -* BETA(K+L+1:N) = 0. -* -* U (input/output) DOUBLE PRECISION array, dimension (LDU,M) -* On entry, if JOBU = 'U', U must contain a matrix U1 (usually -* the orthogonal matrix returned by DGGSVP). -* On exit, -* if JOBU = 'I', U contains the orthogonal matrix U; -* if JOBU = 'U', U contains the product U1*U. -* If JOBU = 'N', U is not referenced. -* -* LDU (input) INTEGER -* The leading dimension of the array U. LDU >= max(1,M) if -* JOBU = 'U'; LDU >= 1 otherwise. -* -* V (input/output) DOUBLE PRECISION array, dimension (LDV,P) -* On entry, if JOBV = 'V', V must contain a matrix V1 (usually -* the orthogonal matrix returned by DGGSVP). -* On exit, -* if JOBV = 'I', V contains the orthogonal matrix V; -* if JOBV = 'V', V contains the product V1*V. -* If JOBV = 'N', V is not referenced. -* -* LDV (input) INTEGER -* The leading dimension of the array V. LDV >= max(1,P) if -* JOBV = 'V'; LDV >= 1 otherwise. -* -* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) -* On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually -* the orthogonal matrix returned by DGGSVP). -* On exit, -* if JOBQ = 'I', Q contains the orthogonal matrix Q; -* if JOBQ = 'Q', Q contains the product Q1*Q. -* If JOBQ = 'N', Q is not referenced. -* -* LDQ (input) INTEGER -* The leading dimension of the array Q. LDQ >= max(1,N) if -* JOBQ = 'Q'; LDQ >= 1 otherwise. -* -* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) -* -* NCYCLE (output) INTEGER -* The number of cycles required for convergence. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value. -* = 1: the procedure does not converge after MAXIT cycles. -* -* Internal Parameters -* =================== -* -* MAXIT INTEGER -* MAXIT specifies the total loops that the iterative procedure -* may take. If after MAXIT cycles, the routine fails to -* converge, we return INFO = 1. -* -* Further Details -* =============== -* -* DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce -* min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L -* matrix B13 to the form: -* -* U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1, -* -* where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose -* of Z. C1 and S1 are diagonal matrices satisfying -* -* C1**2 + S1**2 = I, -* -* and R1 is an L-by-L nonsingular upper triangular matrix. -* * ===================================================================== * * .. Parameters ..