File:  [local] / rpl / lapack / lapack / dtgsen.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Tue May 29 06:55:21 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DTGSEN
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTGSEN + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsen.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsen.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsen.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
   22: *                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
   23: *                          PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       LOGICAL            WANTQ, WANTZ
   27: *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
   28: *      $                   M, N
   29: *       DOUBLE PRECISION   PL, PR
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       LOGICAL            SELECT( * )
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   35: *      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
   36: *      $                   WORK( * ), Z( LDZ, * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DTGSEN reorders the generalized real Schur decomposition of a real
   46: *> matrix pair (A, B) (in terms of an orthonormal equivalence trans-
   47: *> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
   48: *> appears in the leading diagonal blocks of the upper quasi-triangular
   49: *> matrix A and the upper triangular B. The leading columns of Q and
   50: *> Z form orthonormal bases of the corresponding left and right eigen-
   51: *> spaces (deflating subspaces). (A, B) must be in generalized real
   52: *> Schur canonical form (as returned by DGGES), i.e. A is block upper
   53: *> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
   54: *> triangular.
   55: *>
   56: *> DTGSEN also computes the generalized eigenvalues
   57: *>
   58: *>             w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
   59: *>
   60: *> of the reordered matrix pair (A, B).
   61: *>
   62: *> Optionally, DTGSEN computes the estimates of reciprocal condition
   63: *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
   64: *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
   65: *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
   66: *> the selected cluster and the eigenvalues outside the cluster, resp.,
   67: *> and norms of "projections" onto left and right eigenspaces w.r.t.
   68: *> the selected cluster in the (1,1)-block.
   69: *> \endverbatim
   70: *
   71: *  Arguments:
   72: *  ==========
   73: *
   74: *> \param[in] IJOB
   75: *> \verbatim
   76: *>          IJOB is INTEGER
   77: *>          Specifies whether condition numbers are required for the
   78: *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
   79: *>          (Difu and Difl):
   80: *>           =0: Only reorder w.r.t. SELECT. No extras.
   81: *>           =1: Reciprocal of norms of "projections" onto left and right
   82: *>               eigenspaces w.r.t. the selected cluster (PL and PR).
   83: *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
   84: *>               (DIF(1:2)).
   85: *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
   86: *>               (DIF(1:2)).
   87: *>               About 5 times as expensive as IJOB = 2.
   88: *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
   89: *>               version to get it all.
   90: *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
   91: *> \endverbatim
   92: *>
   93: *> \param[in] WANTQ
   94: *> \verbatim
   95: *>          WANTQ is LOGICAL
   96: *>          .TRUE. : update the left transformation matrix Q;
   97: *>          .FALSE.: do not update Q.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] WANTZ
  101: *> \verbatim
  102: *>          WANTZ is LOGICAL
  103: *>          .TRUE. : update the right transformation matrix Z;
  104: *>          .FALSE.: do not update Z.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] SELECT
  108: *> \verbatim
  109: *>          SELECT is LOGICAL array, dimension (N)
  110: *>          SELECT specifies the eigenvalues in the selected cluster.
  111: *>          To select a real eigenvalue w(j), SELECT(j) must be set to
  112: *>          .TRUE.. To select a complex conjugate pair of eigenvalues
  113: *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
  114: *>          either SELECT(j) or SELECT(j+1) or both must be set to
  115: *>          .TRUE.; a complex conjugate pair of eigenvalues must be
  116: *>          either both included in the cluster or both excluded.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] N
  120: *> \verbatim
  121: *>          N is INTEGER
  122: *>          The order of the matrices A and B. N >= 0.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] A
  126: *> \verbatim
  127: *>          A is DOUBLE PRECISION array, dimension(LDA,N)
  128: *>          On entry, the upper quasi-triangular matrix A, with (A, B) in
  129: *>          generalized real Schur canonical form.
  130: *>          On exit, A is overwritten by the reordered matrix A.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LDA
  134: *> \verbatim
  135: *>          LDA is INTEGER
  136: *>          The leading dimension of the array A. LDA >= max(1,N).
  137: *> \endverbatim
  138: *>
  139: *> \param[in,out] B
  140: *> \verbatim
  141: *>          B is DOUBLE PRECISION array, dimension(LDB,N)
  142: *>          On entry, the upper triangular matrix B, with (A, B) in
  143: *>          generalized real Schur canonical form.
  144: *>          On exit, B is overwritten by the reordered matrix B.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDB
  148: *> \verbatim
  149: *>          LDB is INTEGER
  150: *>          The leading dimension of the array B. LDB >= max(1,N).
  151: *> \endverbatim
  152: *>
  153: *> \param[out] ALPHAR
  154: *> \verbatim
  155: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
  156: *> \endverbatim
  157: *>
  158: *> \param[out] ALPHAI
  159: *> \verbatim
  160: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
  161: *> \endverbatim
  162: *>
  163: *> \param[out] BETA
  164: *> \verbatim
  165: *>          BETA is DOUBLE PRECISION array, dimension (N)
  166: *>
  167: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  168: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
  169: *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
  170: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
  171: *>          the real generalized Schur form of (A,B) were further reduced
  172: *>          to triangular form using complex unitary transformations.
  173: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
  174: *>          positive, then the j-th and (j+1)-st eigenvalues are a
  175: *>          complex conjugate pair, with ALPHAI(j+1) negative.
  176: *> \endverbatim
  177: *>
  178: *> \param[in,out] Q
  179: *> \verbatim
  180: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
  181: *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
  182: *>          On exit, Q has been postmultiplied by the left orthogonal
  183: *>          transformation matrix which reorder (A, B); The leading M
  184: *>          columns of Q form orthonormal bases for the specified pair of
  185: *>          left eigenspaces (deflating subspaces).
  186: *>          If WANTQ = .FALSE., Q is not referenced.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] LDQ
  190: *> \verbatim
  191: *>          LDQ is INTEGER
  192: *>          The leading dimension of the array Q.  LDQ >= 1;
  193: *>          and if WANTQ = .TRUE., LDQ >= N.
  194: *> \endverbatim
  195: *>
  196: *> \param[in,out] Z
  197: *> \verbatim
  198: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
  199: *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
  200: *>          On exit, Z has been postmultiplied by the left orthogonal
  201: *>          transformation matrix which reorder (A, B); The leading M
  202: *>          columns of Z form orthonormal bases for the specified pair of
  203: *>          left eigenspaces (deflating subspaces).
  204: *>          If WANTZ = .FALSE., Z is not referenced.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] LDZ
  208: *> \verbatim
  209: *>          LDZ is INTEGER
  210: *>          The leading dimension of the array Z. LDZ >= 1;
  211: *>          If WANTZ = .TRUE., LDZ >= N.
  212: *> \endverbatim
  213: *>
  214: *> \param[out] M
  215: *> \verbatim
  216: *>          M is INTEGER
  217: *>          The dimension of the specified pair of left and right eigen-
  218: *>          spaces (deflating subspaces). 0 <= M <= N.
  219: *> \endverbatim
  220: *>
  221: *> \param[out] PL
  222: *> \verbatim
  223: *>          PL is DOUBLE PRECISION
  224: *> \endverbatim
  225: *>
  226: *> \param[out] PR
  227: *> \verbatim
  228: *>          PR is DOUBLE PRECISION
  229: *>
  230: *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
  231: *>          reciprocal of the norm of "projections" onto left and right
  232: *>          eigenspaces with respect to the selected cluster.
  233: *>          0 < PL, PR <= 1.
  234: *>          If M = 0 or M = N, PL = PR  = 1.
  235: *>          If IJOB = 0, 2 or 3, PL and PR are not referenced.
  236: *> \endverbatim
  237: *>
  238: *> \param[out] DIF
  239: *> \verbatim
  240: *>          DIF is DOUBLE PRECISION array, dimension (2).
  241: *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
  242: *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
  243: *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
  244: *>          estimates of Difu and Difl.
  245: *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
  246: *>          If IJOB = 0 or 1, DIF is not referenced.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] WORK
  250: *> \verbatim
  251: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  252: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  253: *> \endverbatim
  254: *>
  255: *> \param[in] LWORK
  256: *> \verbatim
  257: *>          LWORK is INTEGER
  258: *>          The dimension of the array WORK. LWORK >=  4*N+16.
  259: *>          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
  260: *>          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
  261: *>
  262: *>          If LWORK = -1, then a workspace query is assumed; the routine
  263: *>          only calculates the optimal size of the WORK array, returns
  264: *>          this value as the first entry of the WORK array, and no error
  265: *>          message related to LWORK is issued by XERBLA.
  266: *> \endverbatim
  267: *>
  268: *> \param[out] IWORK
  269: *> \verbatim
  270: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  271: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  272: *> \endverbatim
  273: *>
  274: *> \param[in] LIWORK
  275: *> \verbatim
  276: *>          LIWORK is INTEGER
  277: *>          The dimension of the array IWORK. LIWORK >= 1.
  278: *>          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
  279: *>          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
  280: *>
  281: *>          If LIWORK = -1, then a workspace query is assumed; the
  282: *>          routine only calculates the optimal size of the IWORK array,
  283: *>          returns this value as the first entry of the IWORK array, and
  284: *>          no error message related to LIWORK is issued by XERBLA.
  285: *> \endverbatim
  286: *>
  287: *> \param[out] INFO
  288: *> \verbatim
  289: *>          INFO is INTEGER
  290: *>            =0: Successful exit.
  291: *>            <0: If INFO = -i, the i-th argument had an illegal value.
  292: *>            =1: Reordering of (A, B) failed because the transformed
  293: *>                matrix pair (A, B) would be too far from generalized
  294: *>                Schur form; the problem is very ill-conditioned.
  295: *>                (A, B) may have been partially reordered.
  296: *>                If requested, 0 is returned in DIF(*), PL and PR.
  297: *> \endverbatim
  298: *
  299: *  Authors:
  300: *  ========
  301: *
  302: *> \author Univ. of Tennessee
  303: *> \author Univ. of California Berkeley
  304: *> \author Univ. of Colorado Denver
  305: *> \author NAG Ltd.
  306: *
  307: *> \date June 2016
  308: *
  309: *> \ingroup doubleOTHERcomputational
  310: *
  311: *> \par Further Details:
  312: *  =====================
  313: *>
  314: *> \verbatim
  315: *>
  316: *>  DTGSEN first collects the selected eigenvalues by computing
  317: *>  orthogonal U and W that move them to the top left corner of (A, B).
  318: *>  In other words, the selected eigenvalues are the eigenvalues of
  319: *>  (A11, B11) in:
  320: *>
  321: *>              U**T*(A, B)*W = (A11 A12) (B11 B12) n1
  322: *>                              ( 0  A22),( 0  B22) n2
  323: *>                                n1  n2    n1  n2
  324: *>
  325: *>  where N = n1+n2 and U**T means the transpose of U. The first n1 columns
  326: *>  of U and W span the specified pair of left and right eigenspaces
  327: *>  (deflating subspaces) of (A, B).
  328: *>
  329: *>  If (A, B) has been obtained from the generalized real Schur
  330: *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
  331: *>  reordered generalized real Schur form of (C, D) is given by
  332: *>
  333: *>           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
  334: *>
  335: *>  and the first n1 columns of Q*U and Z*W span the corresponding
  336: *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
  337: *>
  338: *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
  339: *>  then its value may differ significantly from its value before
  340: *>  reordering.
  341: *>
  342: *>  The reciprocal condition numbers of the left and right eigenspaces
  343: *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
  344: *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
  345: *>
  346: *>  The Difu and Difl are defined as:
  347: *>
  348: *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
  349: *>  and
  350: *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
  351: *>
  352: *>  where sigma-min(Zu) is the smallest singular value of the
  353: *>  (2*n1*n2)-by-(2*n1*n2) matrix
  354: *>
  355: *>       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]
  356: *>            [ kron(In2, B11)  -kron(B22**T, In1) ].
  357: *>
  358: *>  Here, Inx is the identity matrix of size nx and A22**T is the
  359: *>  transpose of A22. kron(X, Y) is the Kronecker product between
  360: *>  the matrices X and Y.
  361: *>
  362: *>  When DIF(2) is small, small changes in (A, B) can cause large changes
  363: *>  in the deflating subspace. An approximate (asymptotic) bound on the
  364: *>  maximum angular error in the computed deflating subspaces is
  365: *>
  366: *>       EPS * norm((A, B)) / DIF(2),
  367: *>
  368: *>  where EPS is the machine precision.
  369: *>
  370: *>  The reciprocal norm of the projectors on the left and right
  371: *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
  372: *>  They are computed as follows. First we compute L and R so that
  373: *>  P*(A, B)*Q is block diagonal, where
  374: *>
  375: *>       P = ( I -L ) n1           Q = ( I R ) n1
  376: *>           ( 0  I ) n2    and        ( 0 I ) n2
  377: *>             n1 n2                    n1 n2
  378: *>
  379: *>  and (L, R) is the solution to the generalized Sylvester equation
  380: *>
  381: *>       A11*R - L*A22 = -A12
  382: *>       B11*R - L*B22 = -B12
  383: *>
  384: *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
  385: *>  An approximate (asymptotic) bound on the average absolute error of
  386: *>  the selected eigenvalues is
  387: *>
  388: *>       EPS * norm((A, B)) / PL.
  389: *>
  390: *>  There are also global error bounds which valid for perturbations up
  391: *>  to a certain restriction:  A lower bound (x) on the smallest
  392: *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
  393: *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
  394: *>  (i.e. (A + E, B + F), is
  395: *>
  396: *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
  397: *>
  398: *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
  399: *>
  400: *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
  401: *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
  402: *>  associated with the selected cluster in the (1,1)-blocks can be
  403: *>  bounded as
  404: *>
  405: *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
  406: *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
  407: *>
  408: *>  See LAPACK User's Guide section 4.11 or the following references
  409: *>  for more information.
  410: *>
  411: *>  Note that if the default method for computing the Frobenius-norm-
  412: *>  based estimate DIF is not wanted (see DLATDF), then the parameter
  413: *>  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
  414: *>  (IJOB = 2 will be used)). See DTGSYL for more details.
  415: *> \endverbatim
  416: *
  417: *> \par Contributors:
  418: *  ==================
  419: *>
  420: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  421: *>     Umea University, S-901 87 Umea, Sweden.
  422: *
  423: *> \par References:
  424: *  ================
  425: *>
  426: *> \verbatim
  427: *>
  428: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  429: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  430: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  431: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  432: *>
  433: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  434: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  435: *>      Estimation: Theory, Algorithms and Software,
  436: *>      Report UMINF - 94.04, Department of Computing Science, Umea
  437: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
  438: *>      Note 87. To appear in Numerical Algorithms, 1996.
  439: *>
  440: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  441: *>      for Solving the Generalized Sylvester Equation and Estimating the
  442: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  443: *>      Department of Computing Science, Umea University, S-901 87 Umea,
  444: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
  445: *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
  446: *>      1996.
  447: *> \endverbatim
  448: *>
  449: *  =====================================================================
  450:       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
  451:      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
  452:      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
  453: *
  454: *  -- LAPACK computational routine (version 3.7.1) --
  455: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  456: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  457: *     June 2016
  458: *
  459: *     .. Scalar Arguments ..
  460:       LOGICAL            WANTQ, WANTZ
  461:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
  462:      $                   M, N
  463:       DOUBLE PRECISION   PL, PR
  464: *     ..
  465: *     .. Array Arguments ..
  466:       LOGICAL            SELECT( * )
  467:       INTEGER            IWORK( * )
  468:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  469:      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
  470:      $                   WORK( * ), Z( LDZ, * )
  471: *     ..
  472: *
  473: *  =====================================================================
  474: *
  475: *     .. Parameters ..
  476:       INTEGER            IDIFJB
  477:       PARAMETER          ( IDIFJB = 3 )
  478:       DOUBLE PRECISION   ZERO, ONE
  479:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  480: *     ..
  481: *     .. Local Scalars ..
  482:       LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
  483:      $                   WANTP
  484:       INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
  485:      $                   MN2, N1, N2
  486:       DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
  487: *     ..
  488: *     .. Local Arrays ..
  489:       INTEGER            ISAVE( 3 )
  490: *     ..
  491: *     .. External Subroutines ..
  492:       EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
  493:      $                   XERBLA
  494: *     ..
  495: *     .. External Functions ..
  496:       DOUBLE PRECISION   DLAMCH
  497:       EXTERNAL           DLAMCH
  498: *     ..
  499: *     .. Intrinsic Functions ..
  500:       INTRINSIC          MAX, SIGN, SQRT
  501: *     ..
  502: *     .. Executable Statements ..
  503: *
  504: *     Decode and test the input parameters
  505: *
  506:       INFO = 0
  507:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  508: *
  509:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
  510:          INFO = -1
  511:       ELSE IF( N.LT.0 ) THEN
  512:          INFO = -5
  513:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  514:          INFO = -7
  515:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  516:          INFO = -9
  517:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  518:          INFO = -14
  519:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  520:          INFO = -16
  521:       END IF
  522: *
  523:       IF( INFO.NE.0 ) THEN
  524:          CALL XERBLA( 'DTGSEN', -INFO )
  525:          RETURN
  526:       END IF
  527: *
  528: *     Get machine constants
  529: *
  530:       EPS = DLAMCH( 'P' )
  531:       SMLNUM = DLAMCH( 'S' ) / EPS
  532:       IERR = 0
  533: *
  534:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
  535:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
  536:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
  537:       WANTD = WANTD1 .OR. WANTD2
  538: *
  539: *     Set M to the dimension of the specified pair of deflating
  540: *     subspaces.
  541: *
  542:       M = 0
  543:       PAIR = .FALSE.
  544:       IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
  545:       DO 10 K = 1, N
  546:          IF( PAIR ) THEN
  547:             PAIR = .FALSE.
  548:          ELSE
  549:             IF( K.LT.N ) THEN
  550:                IF( A( K+1, K ).EQ.ZERO ) THEN
  551:                   IF( SELECT( K ) )
  552:      $               M = M + 1
  553:                ELSE
  554:                   PAIR = .TRUE.
  555:                   IF( SELECT( K ) .OR. SELECT( K+1 ) )
  556:      $               M = M + 2
  557:                END IF
  558:             ELSE
  559:                IF( SELECT( N ) )
  560:      $            M = M + 1
  561:             END IF
  562:          END IF
  563:    10 CONTINUE
  564:       END IF
  565: *
  566:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
  567:          LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
  568:          LIWMIN = MAX( 1, N+6 )
  569:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
  570:          LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
  571:          LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
  572:       ELSE
  573:          LWMIN = MAX( 1, 4*N+16 )
  574:          LIWMIN = 1
  575:       END IF
  576: *
  577:       WORK( 1 ) = LWMIN
  578:       IWORK( 1 ) = LIWMIN
  579: *
  580:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  581:          INFO = -22
  582:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  583:          INFO = -24
  584:       END IF
  585: *
  586:       IF( INFO.NE.0 ) THEN
  587:          CALL XERBLA( 'DTGSEN', -INFO )
  588:          RETURN
  589:       ELSE IF( LQUERY ) THEN
  590:          RETURN
  591:       END IF
  592: *
  593: *     Quick return if possible.
  594: *
  595:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
  596:          IF( WANTP ) THEN
  597:             PL = ONE
  598:             PR = ONE
  599:          END IF
  600:          IF( WANTD ) THEN
  601:             DSCALE = ZERO
  602:             DSUM = ONE
  603:             DO 20 I = 1, N
  604:                CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
  605:                CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
  606:    20       CONTINUE
  607:             DIF( 1 ) = DSCALE*SQRT( DSUM )
  608:             DIF( 2 ) = DIF( 1 )
  609:          END IF
  610:          GO TO 60
  611:       END IF
  612: *
  613: *     Collect the selected blocks at the top-left corner of (A, B).
  614: *
  615:       KS = 0
  616:       PAIR = .FALSE.
  617:       DO 30 K = 1, N
  618:          IF( PAIR ) THEN
  619:             PAIR = .FALSE.
  620:          ELSE
  621: *
  622:             SWAP = SELECT( K )
  623:             IF( K.LT.N ) THEN
  624:                IF( A( K+1, K ).NE.ZERO ) THEN
  625:                   PAIR = .TRUE.
  626:                   SWAP = SWAP .OR. SELECT( K+1 )
  627:                END IF
  628:             END IF
  629: *
  630:             IF( SWAP ) THEN
  631:                KS = KS + 1
  632: *
  633: *              Swap the K-th block to position KS.
  634: *              Perform the reordering of diagonal blocks in (A, B)
  635: *              by orthogonal transformation matrices and update
  636: *              Q and Z accordingly (if requested):
  637: *
  638:                KK = K
  639:                IF( K.NE.KS )
  640:      $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
  641:      $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
  642: *
  643:                IF( IERR.GT.0 ) THEN
  644: *
  645: *                 Swap is rejected: exit.
  646: *
  647:                   INFO = 1
  648:                   IF( WANTP ) THEN
  649:                      PL = ZERO
  650:                      PR = ZERO
  651:                   END IF
  652:                   IF( WANTD ) THEN
  653:                      DIF( 1 ) = ZERO
  654:                      DIF( 2 ) = ZERO
  655:                   END IF
  656:                   GO TO 60
  657:                END IF
  658: *
  659:                IF( PAIR )
  660:      $            KS = KS + 1
  661:             END IF
  662:          END IF
  663:    30 CONTINUE
  664:       IF( WANTP ) THEN
  665: *
  666: *        Solve generalized Sylvester equation for R and L
  667: *        and compute PL and PR.
  668: *
  669:          N1 = M
  670:          N2 = N - M
  671:          I = N1 + 1
  672:          IJB = 0
  673:          CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
  674:          CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
  675:      $                N1 )
  676:          CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  677:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
  678:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
  679:      $                LWORK-2*N1*N2, IWORK, IERR )
  680: *
  681: *        Estimate the reciprocal of norms of "projections" onto left
  682: *        and right eigenspaces.
  683: *
  684:          RDSCAL = ZERO
  685:          DSUM = ONE
  686:          CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
  687:          PL = RDSCAL*SQRT( DSUM )
  688:          IF( PL.EQ.ZERO ) THEN
  689:             PL = ONE
  690:          ELSE
  691:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
  692:          END IF
  693:          RDSCAL = ZERO
  694:          DSUM = ONE
  695:          CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
  696:          PR = RDSCAL*SQRT( DSUM )
  697:          IF( PR.EQ.ZERO ) THEN
  698:             PR = ONE
  699:          ELSE
  700:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
  701:          END IF
  702:       END IF
  703: *
  704:       IF( WANTD ) THEN
  705: *
  706: *        Compute estimates of Difu and Difl.
  707: *
  708:          IF( WANTD1 ) THEN
  709:             N1 = M
  710:             N2 = N - M
  711:             I = N1 + 1
  712:             IJB = IDIFJB
  713: *
  714: *           Frobenius norm-based Difu-estimate.
  715: *
  716:             CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  717:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
  718:      $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
  719:      $                   LWORK-2*N1*N2, IWORK, IERR )
  720: *
  721: *           Frobenius norm-based Difl-estimate.
  722: *
  723:             CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
  724:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
  725:      $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
  726:      $                   LWORK-2*N1*N2, IWORK, IERR )
  727:          ELSE
  728: *
  729: *
  730: *           Compute 1-norm-based estimates of Difu and Difl using
  731: *           reversed communication with DLACN2. In each step a
  732: *           generalized Sylvester equation or a transposed variant
  733: *           is solved.
  734: *
  735:             KASE = 0
  736:             N1 = M
  737:             N2 = N - M
  738:             I = N1 + 1
  739:             IJB = 0
  740:             MN2 = 2*N1*N2
  741: *
  742: *           1-norm-based estimate of Difu.
  743: *
  744:    40       CONTINUE
  745:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
  746:      $                   KASE, ISAVE )
  747:             IF( KASE.NE.0 ) THEN
  748:                IF( KASE.EQ.1 ) THEN
  749: *
  750: *                 Solve generalized Sylvester equation.
  751: *
  752:                   CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  753:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
  754:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  755:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  756:      $                         IERR )
  757:                ELSE
  758: *
  759: *                 Solve the transposed variant.
  760: *
  761:                   CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  762:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
  763:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  764:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  765:      $                         IERR )
  766:                END IF
  767:                GO TO 40
  768:             END IF
  769:             DIF( 1 ) = DSCALE / DIF( 1 )
  770: *
  771: *           1-norm-based estimate of Difl.
  772: *
  773:    50       CONTINUE
  774:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
  775:      $                   KASE, ISAVE )
  776:             IF( KASE.NE.0 ) THEN
  777:                IF( KASE.EQ.1 ) THEN
  778: *
  779: *                 Solve generalized Sylvester equation.
  780: *
  781:                   CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  782:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
  783:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  784:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  785:      $                         IERR )
  786:                ELSE
  787: *
  788: *                 Solve the transposed variant.
  789: *
  790:                   CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  791:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
  792:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  793:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  794:      $                         IERR )
  795:                END IF
  796:                GO TO 50
  797:             END IF
  798:             DIF( 2 ) = DSCALE / DIF( 2 )
  799: *
  800:          END IF
  801:       END IF
  802: *
  803:    60 CONTINUE
  804: *
  805: *     Compute generalized eigenvalues of reordered pair (A, B) and
  806: *     normalize the generalized Schur form.
  807: *
  808:       PAIR = .FALSE.
  809:       DO 80 K = 1, N
  810:          IF( PAIR ) THEN
  811:             PAIR = .FALSE.
  812:          ELSE
  813: *
  814:             IF( K.LT.N ) THEN
  815:                IF( A( K+1, K ).NE.ZERO ) THEN
  816:                   PAIR = .TRUE.
  817:                END IF
  818:             END IF
  819: *
  820:             IF( PAIR ) THEN
  821: *
  822: *             Compute the eigenvalue(s) at position K.
  823: *
  824:                WORK( 1 ) = A( K, K )
  825:                WORK( 2 ) = A( K+1, K )
  826:                WORK( 3 ) = A( K, K+1 )
  827:                WORK( 4 ) = A( K+1, K+1 )
  828:                WORK( 5 ) = B( K, K )
  829:                WORK( 6 ) = B( K+1, K )
  830:                WORK( 7 ) = B( K, K+1 )
  831:                WORK( 8 ) = B( K+1, K+1 )
  832:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
  833:      $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
  834:      $                     ALPHAI( K ) )
  835:                ALPHAI( K+1 ) = -ALPHAI( K )
  836: *
  837:             ELSE
  838: *
  839:                IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
  840: *
  841: *                 If B(K,K) is negative, make it positive
  842: *
  843:                   DO 70 I = 1, N
  844:                      A( K, I ) = -A( K, I )
  845:                      B( K, I ) = -B( K, I )
  846:                      IF( WANTQ ) Q( I, K ) = -Q( I, K )
  847:    70             CONTINUE
  848:                END IF
  849: *
  850:                ALPHAR( K ) = A( K, K )
  851:                ALPHAI( K ) = ZERO
  852:                BETA( K ) = B( K, K )
  853: *
  854:             END IF
  855:          END IF
  856:    80 CONTINUE
  857: *
  858:       WORK( 1 ) = LWMIN
  859:       IWORK( 1 ) = LIWMIN
  860: *
  861:       RETURN
  862: *
  863: *     End of DTGSEN
  864: *
  865:       END

CVSweb interface <joel.bertrand@systella.fr>