File:  [local] / rpl / lapack / lapack / dtgsen.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:29 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b DTGSEN
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DTGSEN + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsen.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsen.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsen.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
   22: *                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
   23: *                          PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       LOGICAL            WANTQ, WANTZ
   27: *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
   28: *      $                   M, N
   29: *       DOUBLE PRECISION   PL, PR
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       LOGICAL            SELECT( * )
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   35: *      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
   36: *      $                   WORK( * ), Z( LDZ, * )
   37: *       ..
   38: *  
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DTGSEN reorders the generalized real Schur decomposition of a real
   46: *> matrix pair (A, B) (in terms of an orthonormal equivalence trans-
   47: *> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
   48: *> appears in the leading diagonal blocks of the upper quasi-triangular
   49: *> matrix A and the upper triangular B. The leading columns of Q and
   50: *> Z form orthonormal bases of the corresponding left and right eigen-
   51: *> spaces (deflating subspaces). (A, B) must be in generalized real
   52: *> Schur canonical form (as returned by DGGES), i.e. A is block upper
   53: *> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
   54: *> triangular.
   55: *>
   56: *> DTGSEN also computes the generalized eigenvalues
   57: *>
   58: *>             w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
   59: *>
   60: *> of the reordered matrix pair (A, B).
   61: *>
   62: *> Optionally, DTGSEN computes the estimates of reciprocal condition
   63: *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
   64: *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
   65: *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
   66: *> the selected cluster and the eigenvalues outside the cluster, resp.,
   67: *> and norms of "projections" onto left and right eigenspaces w.r.t.
   68: *> the selected cluster in the (1,1)-block.
   69: *> \endverbatim
   70: *
   71: *  Arguments:
   72: *  ==========
   73: *
   74: *> \param[in] IJOB
   75: *> \verbatim
   76: *>          IJOB is INTEGER
   77: *>          Specifies whether condition numbers are required for the
   78: *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
   79: *>          (Difu and Difl):
   80: *>           =0: Only reorder w.r.t. SELECT. No extras.
   81: *>           =1: Reciprocal of norms of "projections" onto left and right
   82: *>               eigenspaces w.r.t. the selected cluster (PL and PR).
   83: *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
   84: *>               (DIF(1:2)).
   85: *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
   86: *>               (DIF(1:2)).
   87: *>               About 5 times as expensive as IJOB = 2.
   88: *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
   89: *>               version to get it all.
   90: *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
   91: *> \endverbatim
   92: *>
   93: *> \param[in] WANTQ
   94: *> \verbatim
   95: *>          WANTQ is LOGICAL
   96: *>          .TRUE. : update the left transformation matrix Q;
   97: *>          .FALSE.: do not update Q.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] WANTZ
  101: *> \verbatim
  102: *>          WANTZ is LOGICAL
  103: *>          .TRUE. : update the right transformation matrix Z;
  104: *>          .FALSE.: do not update Z.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] SELECT
  108: *> \verbatim
  109: *>          SELECT is LOGICAL array, dimension (N)
  110: *>          SELECT specifies the eigenvalues in the selected cluster.
  111: *>          To select a real eigenvalue w(j), SELECT(j) must be set to
  112: *>          .TRUE.. To select a complex conjugate pair of eigenvalues
  113: *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
  114: *>          either SELECT(j) or SELECT(j+1) or both must be set to
  115: *>          .TRUE.; a complex conjugate pair of eigenvalues must be
  116: *>          either both included in the cluster or both excluded.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] N
  120: *> \verbatim
  121: *>          N is INTEGER
  122: *>          The order of the matrices A and B. N >= 0.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] A
  126: *> \verbatim
  127: *>          A is DOUBLE PRECISION array, dimension(LDA,N)
  128: *>          On entry, the upper quasi-triangular matrix A, with (A, B) in
  129: *>          generalized real Schur canonical form.
  130: *>          On exit, A is overwritten by the reordered matrix A.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LDA
  134: *> \verbatim
  135: *>          LDA is INTEGER
  136: *>          The leading dimension of the array A. LDA >= max(1,N).
  137: *> \endverbatim
  138: *>
  139: *> \param[in,out] B
  140: *> \verbatim
  141: *>          B is DOUBLE PRECISION array, dimension(LDB,N)
  142: *>          On entry, the upper triangular matrix B, with (A, B) in
  143: *>          generalized real Schur canonical form.
  144: *>          On exit, B is overwritten by the reordered matrix B.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDB
  148: *> \verbatim
  149: *>          LDB is INTEGER
  150: *>          The leading dimension of the array B. LDB >= max(1,N).
  151: *> \endverbatim
  152: *>
  153: *> \param[out] ALPHAR
  154: *> \verbatim
  155: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
  156: *> \endverbatim
  157: *>
  158: *> \param[out] ALPHAI
  159: *> \verbatim
  160: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
  161: *> \endverbatim
  162: *>
  163: *> \param[out] BETA
  164: *> \verbatim
  165: *>          BETA is DOUBLE PRECISION array, dimension (N)
  166: *>
  167: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  168: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
  169: *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
  170: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
  171: *>          the real generalized Schur form of (A,B) were further reduced
  172: *>          to triangular form using complex unitary transformations.
  173: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
  174: *>          positive, then the j-th and (j+1)-st eigenvalues are a
  175: *>          complex conjugate pair, with ALPHAI(j+1) negative.
  176: *> \endverbatim
  177: *>
  178: *> \param[in,out] Q
  179: *> \verbatim
  180: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
  181: *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
  182: *>          On exit, Q has been postmultiplied by the left orthogonal
  183: *>          transformation matrix which reorder (A, B); The leading M
  184: *>          columns of Q form orthonormal bases for the specified pair of
  185: *>          left eigenspaces (deflating subspaces).
  186: *>          If WANTQ = .FALSE., Q is not referenced.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] LDQ
  190: *> \verbatim
  191: *>          LDQ is INTEGER
  192: *>          The leading dimension of the array Q.  LDQ >= 1;
  193: *>          and if WANTQ = .TRUE., LDQ >= N.
  194: *> \endverbatim
  195: *>
  196: *> \param[in,out] Z
  197: *> \verbatim
  198: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
  199: *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
  200: *>          On exit, Z has been postmultiplied by the left orthogonal
  201: *>          transformation matrix which reorder (A, B); The leading M
  202: *>          columns of Z form orthonormal bases for the specified pair of
  203: *>          left eigenspaces (deflating subspaces).
  204: *>          If WANTZ = .FALSE., Z is not referenced.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] LDZ
  208: *> \verbatim
  209: *>          LDZ is INTEGER
  210: *>          The leading dimension of the array Z. LDZ >= 1;
  211: *>          If WANTZ = .TRUE., LDZ >= N.
  212: *> \endverbatim
  213: *>
  214: *> \param[out] M
  215: *> \verbatim
  216: *>          M is INTEGER
  217: *>          The dimension of the specified pair of left and right eigen-
  218: *>          spaces (deflating subspaces). 0 <= M <= N.
  219: *> \endverbatim
  220: *>
  221: *> \param[out] PL
  222: *> \verbatim
  223: *>          PL is DOUBLE PRECISION
  224: *> \endverbatim
  225: 
  226: *> \param[out] PR
  227: *> \verbatim
  228: *>          PR is DOUBLE PRECISION
  229: *>
  230: *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
  231: *>          reciprocal of the norm of "projections" onto left and right
  232: *>          eigenspaces with respect to the selected cluster.
  233: *>          0 < PL, PR <= 1.
  234: *>          If M = 0 or M = N, PL = PR  = 1.
  235: *>          If IJOB = 0, 2 or 3, PL and PR are not referenced.
  236: *> \endverbatim
  237: *>
  238: *> \param[out] DIF
  239: *> \verbatim
  240: *>          DIF is DOUBLE PRECISION array, dimension (2).
  241: *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
  242: *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
  243: *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
  244: *>          estimates of Difu and Difl.
  245: *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
  246: *>          If IJOB = 0 or 1, DIF is not referenced.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] WORK
  250: *> \verbatim
  251: *>          WORK is DOUBLE PRECISION array,
  252: *>          dimension (MAX(1,LWORK)) 
  253: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  254: *> \endverbatim
  255: *>
  256: *> \param[in] LWORK
  257: *> \verbatim
  258: *>          LWORK is INTEGER
  259: *>          The dimension of the array WORK. LWORK >=  4*N+16.
  260: *>          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
  261: *>          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
  262: *>
  263: *>          If LWORK = -1, then a workspace query is assumed; the routine
  264: *>          only calculates the optimal size of the WORK array, returns
  265: *>          this value as the first entry of the WORK array, and no error
  266: *>          message related to LWORK is issued by XERBLA.
  267: *> \endverbatim
  268: *>
  269: *> \param[out] IWORK
  270: *> \verbatim
  271: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  272: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  273: *> \endverbatim
  274: *>
  275: *> \param[in] LIWORK
  276: *> \verbatim
  277: *>          LIWORK is INTEGER
  278: *>          The dimension of the array IWORK. LIWORK >= 1.
  279: *>          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
  280: *>          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
  281: *>
  282: *>          If LIWORK = -1, then a workspace query is assumed; the
  283: *>          routine only calculates the optimal size of the IWORK array,
  284: *>          returns this value as the first entry of the IWORK array, and
  285: *>          no error message related to LIWORK is issued by XERBLA.
  286: *> \endverbatim
  287: *>
  288: *> \param[out] INFO
  289: *> \verbatim
  290: *>          INFO is INTEGER
  291: *>            =0: Successful exit.
  292: *>            <0: If INFO = -i, the i-th argument had an illegal value.
  293: *>            =1: Reordering of (A, B) failed because the transformed
  294: *>                matrix pair (A, B) would be too far from generalized
  295: *>                Schur form; the problem is very ill-conditioned.
  296: *>                (A, B) may have been partially reordered.
  297: *>                If requested, 0 is returned in DIF(*), PL and PR.
  298: *> \endverbatim
  299: *
  300: *  Authors:
  301: *  ========
  302: *
  303: *> \author Univ. of Tennessee 
  304: *> \author Univ. of California Berkeley 
  305: *> \author Univ. of Colorado Denver 
  306: *> \author NAG Ltd. 
  307: *
  308: *> \date November 2011
  309: *
  310: *> \ingroup doubleOTHERcomputational
  311: *
  312: *> \par Further Details:
  313: *  =====================
  314: *>
  315: *> \verbatim
  316: *>
  317: *>  DTGSEN first collects the selected eigenvalues by computing
  318: *>  orthogonal U and W that move them to the top left corner of (A, B).
  319: *>  In other words, the selected eigenvalues are the eigenvalues of
  320: *>  (A11, B11) in:
  321: *>
  322: *>              U**T*(A, B)*W = (A11 A12) (B11 B12) n1
  323: *>                              ( 0  A22),( 0  B22) n2
  324: *>                                n1  n2    n1  n2
  325: *>
  326: *>  where N = n1+n2 and U**T means the transpose of U. The first n1 columns
  327: *>  of U and W span the specified pair of left and right eigenspaces
  328: *>  (deflating subspaces) of (A, B).
  329: *>
  330: *>  If (A, B) has been obtained from the generalized real Schur
  331: *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
  332: *>  reordered generalized real Schur form of (C, D) is given by
  333: *>
  334: *>           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
  335: *>
  336: *>  and the first n1 columns of Q*U and Z*W span the corresponding
  337: *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
  338: *>
  339: *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
  340: *>  then its value may differ significantly from its value before
  341: *>  reordering.
  342: *>
  343: *>  The reciprocal condition numbers of the left and right eigenspaces
  344: *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
  345: *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
  346: *>
  347: *>  The Difu and Difl are defined as:
  348: *>
  349: *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
  350: *>  and
  351: *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
  352: *>
  353: *>  where sigma-min(Zu) is the smallest singular value of the
  354: *>  (2*n1*n2)-by-(2*n1*n2) matrix
  355: *>
  356: *>       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]
  357: *>            [ kron(In2, B11)  -kron(B22**T, In1) ].
  358: *>
  359: *>  Here, Inx is the identity matrix of size nx and A22**T is the
  360: *>  transpose of A22. kron(X, Y) is the Kronecker product between
  361: *>  the matrices X and Y.
  362: *>
  363: *>  When DIF(2) is small, small changes in (A, B) can cause large changes
  364: *>  in the deflating subspace. An approximate (asymptotic) bound on the
  365: *>  maximum angular error in the computed deflating subspaces is
  366: *>
  367: *>       EPS * norm((A, B)) / DIF(2),
  368: *>
  369: *>  where EPS is the machine precision.
  370: *>
  371: *>  The reciprocal norm of the projectors on the left and right
  372: *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
  373: *>  They are computed as follows. First we compute L and R so that
  374: *>  P*(A, B)*Q is block diagonal, where
  375: *>
  376: *>       P = ( I -L ) n1           Q = ( I R ) n1
  377: *>           ( 0  I ) n2    and        ( 0 I ) n2
  378: *>             n1 n2                    n1 n2
  379: *>
  380: *>  and (L, R) is the solution to the generalized Sylvester equation
  381: *>
  382: *>       A11*R - L*A22 = -A12
  383: *>       B11*R - L*B22 = -B12
  384: *>
  385: *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
  386: *>  An approximate (asymptotic) bound on the average absolute error of
  387: *>  the selected eigenvalues is
  388: *>
  389: *>       EPS * norm((A, B)) / PL.
  390: *>
  391: *>  There are also global error bounds which valid for perturbations up
  392: *>  to a certain restriction:  A lower bound (x) on the smallest
  393: *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
  394: *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
  395: *>  (i.e. (A + E, B + F), is
  396: *>
  397: *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
  398: *>
  399: *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
  400: *>
  401: *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
  402: *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
  403: *>  associated with the selected cluster in the (1,1)-blocks can be
  404: *>  bounded as
  405: *>
  406: *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
  407: *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
  408: *>
  409: *>  See LAPACK User's Guide section 4.11 or the following references
  410: *>  for more information.
  411: *>
  412: *>  Note that if the default method for computing the Frobenius-norm-
  413: *>  based estimate DIF is not wanted (see DLATDF), then the parameter
  414: *>  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
  415: *>  (IJOB = 2 will be used)). See DTGSYL for more details.
  416: *> \endverbatim
  417: *
  418: *> \par Contributors:
  419: *  ==================
  420: *>
  421: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  422: *>     Umea University, S-901 87 Umea, Sweden.
  423: *
  424: *> \par References:
  425: *  ================
  426: *>
  427: *> \verbatim
  428: *>
  429: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  430: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  431: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  432: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  433: *>
  434: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  435: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  436: *>      Estimation: Theory, Algorithms and Software,
  437: *>      Report UMINF - 94.04, Department of Computing Science, Umea
  438: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
  439: *>      Note 87. To appear in Numerical Algorithms, 1996.
  440: *>
  441: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  442: *>      for Solving the Generalized Sylvester Equation and Estimating the
  443: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  444: *>      Department of Computing Science, Umea University, S-901 87 Umea,
  445: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
  446: *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
  447: *>      1996.
  448: *> \endverbatim
  449: *>
  450: *  =====================================================================
  451:       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
  452:      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
  453:      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
  454: *
  455: *  -- LAPACK computational routine (version 3.4.0) --
  456: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  457: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  458: *     November 2011
  459: *
  460: *     .. Scalar Arguments ..
  461:       LOGICAL            WANTQ, WANTZ
  462:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
  463:      $                   M, N
  464:       DOUBLE PRECISION   PL, PR
  465: *     ..
  466: *     .. Array Arguments ..
  467:       LOGICAL            SELECT( * )
  468:       INTEGER            IWORK( * )
  469:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  470:      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
  471:      $                   WORK( * ), Z( LDZ, * )
  472: *     ..
  473: *
  474: *  =====================================================================
  475: *
  476: *     .. Parameters ..
  477:       INTEGER            IDIFJB
  478:       PARAMETER          ( IDIFJB = 3 )
  479:       DOUBLE PRECISION   ZERO, ONE
  480:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  481: *     ..
  482: *     .. Local Scalars ..
  483:       LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
  484:      $                   WANTP
  485:       INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
  486:      $                   MN2, N1, N2
  487:       DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
  488: *     ..
  489: *     .. Local Arrays ..
  490:       INTEGER            ISAVE( 3 )
  491: *     ..
  492: *     .. External Subroutines ..
  493:       EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
  494:      $                   XERBLA
  495: *     ..
  496: *     .. External Functions ..
  497:       DOUBLE PRECISION   DLAMCH
  498:       EXTERNAL           DLAMCH
  499: *     ..
  500: *     .. Intrinsic Functions ..
  501:       INTRINSIC          MAX, SIGN, SQRT
  502: *     ..
  503: *     .. Executable Statements ..
  504: *
  505: *     Decode and test the input parameters
  506: *
  507:       INFO = 0
  508:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  509: *
  510:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
  511:          INFO = -1
  512:       ELSE IF( N.LT.0 ) THEN
  513:          INFO = -5
  514:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  515:          INFO = -7
  516:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  517:          INFO = -9
  518:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  519:          INFO = -14
  520:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  521:          INFO = -16
  522:       END IF
  523: *
  524:       IF( INFO.NE.0 ) THEN
  525:          CALL XERBLA( 'DTGSEN', -INFO )
  526:          RETURN
  527:       END IF
  528: *
  529: *     Get machine constants
  530: *
  531:       EPS = DLAMCH( 'P' )
  532:       SMLNUM = DLAMCH( 'S' ) / EPS
  533:       IERR = 0
  534: *
  535:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
  536:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
  537:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
  538:       WANTD = WANTD1 .OR. WANTD2
  539: *
  540: *     Set M to the dimension of the specified pair of deflating
  541: *     subspaces.
  542: *
  543:       M = 0
  544:       PAIR = .FALSE.
  545:       DO 10 K = 1, N
  546:          IF( PAIR ) THEN
  547:             PAIR = .FALSE.
  548:          ELSE
  549:             IF( K.LT.N ) THEN
  550:                IF( A( K+1, K ).EQ.ZERO ) THEN
  551:                   IF( SELECT( K ) )
  552:      $               M = M + 1
  553:                ELSE
  554:                   PAIR = .TRUE.
  555:                   IF( SELECT( K ) .OR. SELECT( K+1 ) )
  556:      $               M = M + 2
  557:                END IF
  558:             ELSE
  559:                IF( SELECT( N ) )
  560:      $            M = M + 1
  561:             END IF
  562:          END IF
  563:    10 CONTINUE
  564: *
  565:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
  566:          LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
  567:          LIWMIN = MAX( 1, N+6 )
  568:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
  569:          LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
  570:          LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
  571:       ELSE
  572:          LWMIN = MAX( 1, 4*N+16 )
  573:          LIWMIN = 1
  574:       END IF
  575: *
  576:       WORK( 1 ) = LWMIN
  577:       IWORK( 1 ) = LIWMIN
  578: *
  579:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  580:          INFO = -22
  581:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  582:          INFO = -24
  583:       END IF
  584: *
  585:       IF( INFO.NE.0 ) THEN
  586:          CALL XERBLA( 'DTGSEN', -INFO )
  587:          RETURN
  588:       ELSE IF( LQUERY ) THEN
  589:          RETURN
  590:       END IF
  591: *
  592: *     Quick return if possible.
  593: *
  594:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
  595:          IF( WANTP ) THEN
  596:             PL = ONE
  597:             PR = ONE
  598:          END IF
  599:          IF( WANTD ) THEN
  600:             DSCALE = ZERO
  601:             DSUM = ONE
  602:             DO 20 I = 1, N
  603:                CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
  604:                CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
  605:    20       CONTINUE
  606:             DIF( 1 ) = DSCALE*SQRT( DSUM )
  607:             DIF( 2 ) = DIF( 1 )
  608:          END IF
  609:          GO TO 60
  610:       END IF
  611: *
  612: *     Collect the selected blocks at the top-left corner of (A, B).
  613: *
  614:       KS = 0
  615:       PAIR = .FALSE.
  616:       DO 30 K = 1, N
  617:          IF( PAIR ) THEN
  618:             PAIR = .FALSE.
  619:          ELSE
  620: *
  621:             SWAP = SELECT( K )
  622:             IF( K.LT.N ) THEN
  623:                IF( A( K+1, K ).NE.ZERO ) THEN
  624:                   PAIR = .TRUE.
  625:                   SWAP = SWAP .OR. SELECT( K+1 )
  626:                END IF
  627:             END IF
  628: *
  629:             IF( SWAP ) THEN
  630:                KS = KS + 1
  631: *
  632: *              Swap the K-th block to position KS.
  633: *              Perform the reordering of diagonal blocks in (A, B)
  634: *              by orthogonal transformation matrices and update
  635: *              Q and Z accordingly (if requested):
  636: *
  637:                KK = K
  638:                IF( K.NE.KS )
  639:      $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
  640:      $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
  641: *
  642:                IF( IERR.GT.0 ) THEN
  643: *
  644: *                 Swap is rejected: exit.
  645: *
  646:                   INFO = 1
  647:                   IF( WANTP ) THEN
  648:                      PL = ZERO
  649:                      PR = ZERO
  650:                   END IF
  651:                   IF( WANTD ) THEN
  652:                      DIF( 1 ) = ZERO
  653:                      DIF( 2 ) = ZERO
  654:                   END IF
  655:                   GO TO 60
  656:                END IF
  657: *
  658:                IF( PAIR )
  659:      $            KS = KS + 1
  660:             END IF
  661:          END IF
  662:    30 CONTINUE
  663:       IF( WANTP ) THEN
  664: *
  665: *        Solve generalized Sylvester equation for R and L
  666: *        and compute PL and PR.
  667: *
  668:          N1 = M
  669:          N2 = N - M
  670:          I = N1 + 1
  671:          IJB = 0
  672:          CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
  673:          CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
  674:      $                N1 )
  675:          CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  676:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
  677:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
  678:      $                LWORK-2*N1*N2, IWORK, IERR )
  679: *
  680: *        Estimate the reciprocal of norms of "projections" onto left
  681: *        and right eigenspaces.
  682: *
  683:          RDSCAL = ZERO
  684:          DSUM = ONE
  685:          CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
  686:          PL = RDSCAL*SQRT( DSUM )
  687:          IF( PL.EQ.ZERO ) THEN
  688:             PL = ONE
  689:          ELSE
  690:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
  691:          END IF
  692:          RDSCAL = ZERO
  693:          DSUM = ONE
  694:          CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
  695:          PR = RDSCAL*SQRT( DSUM )
  696:          IF( PR.EQ.ZERO ) THEN
  697:             PR = ONE
  698:          ELSE
  699:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
  700:          END IF
  701:       END IF
  702: *
  703:       IF( WANTD ) THEN
  704: *
  705: *        Compute estimates of Difu and Difl.
  706: *
  707:          IF( WANTD1 ) THEN
  708:             N1 = M
  709:             N2 = N - M
  710:             I = N1 + 1
  711:             IJB = IDIFJB
  712: *
  713: *           Frobenius norm-based Difu-estimate.
  714: *
  715:             CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  716:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
  717:      $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
  718:      $                   LWORK-2*N1*N2, IWORK, IERR )
  719: *
  720: *           Frobenius norm-based Difl-estimate.
  721: *
  722:             CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
  723:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
  724:      $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
  725:      $                   LWORK-2*N1*N2, IWORK, IERR )
  726:          ELSE
  727: *
  728: *
  729: *           Compute 1-norm-based estimates of Difu and Difl using
  730: *           reversed communication with DLACN2. In each step a
  731: *           generalized Sylvester equation or a transposed variant
  732: *           is solved.
  733: *
  734:             KASE = 0
  735:             N1 = M
  736:             N2 = N - M
  737:             I = N1 + 1
  738:             IJB = 0
  739:             MN2 = 2*N1*N2
  740: *
  741: *           1-norm-based estimate of Difu.
  742: *
  743:    40       CONTINUE
  744:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
  745:      $                   KASE, ISAVE )
  746:             IF( KASE.NE.0 ) THEN
  747:                IF( KASE.EQ.1 ) THEN
  748: *
  749: *                 Solve generalized Sylvester equation.
  750: *
  751:                   CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  752:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
  753:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  754:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  755:      $                         IERR )
  756:                ELSE
  757: *
  758: *                 Solve the transposed variant.
  759: *
  760:                   CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  761:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
  762:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  763:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  764:      $                         IERR )
  765:                END IF
  766:                GO TO 40
  767:             END IF
  768:             DIF( 1 ) = DSCALE / DIF( 1 )
  769: *
  770: *           1-norm-based estimate of Difl.
  771: *
  772:    50       CONTINUE
  773:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
  774:      $                   KASE, ISAVE )
  775:             IF( KASE.NE.0 ) THEN
  776:                IF( KASE.EQ.1 ) THEN
  777: *
  778: *                 Solve generalized Sylvester equation.
  779: *
  780:                   CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  781:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
  782:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  783:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  784:      $                         IERR )
  785:                ELSE
  786: *
  787: *                 Solve the transposed variant.
  788: *
  789:                   CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  790:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
  791:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  792:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  793:      $                         IERR )
  794:                END IF
  795:                GO TO 50
  796:             END IF
  797:             DIF( 2 ) = DSCALE / DIF( 2 )
  798: *
  799:          END IF
  800:       END IF
  801: *
  802:    60 CONTINUE
  803: *
  804: *     Compute generalized eigenvalues of reordered pair (A, B) and
  805: *     normalize the generalized Schur form.
  806: *
  807:       PAIR = .FALSE.
  808:       DO 80 K = 1, N
  809:          IF( PAIR ) THEN
  810:             PAIR = .FALSE.
  811:          ELSE
  812: *
  813:             IF( K.LT.N ) THEN
  814:                IF( A( K+1, K ).NE.ZERO ) THEN
  815:                   PAIR = .TRUE.
  816:                END IF
  817:             END IF
  818: *
  819:             IF( PAIR ) THEN
  820: *
  821: *             Compute the eigenvalue(s) at position K.
  822: *
  823:                WORK( 1 ) = A( K, K )
  824:                WORK( 2 ) = A( K+1, K )
  825:                WORK( 3 ) = A( K, K+1 )
  826:                WORK( 4 ) = A( K+1, K+1 )
  827:                WORK( 5 ) = B( K, K )
  828:                WORK( 6 ) = B( K+1, K )
  829:                WORK( 7 ) = B( K, K+1 )
  830:                WORK( 8 ) = B( K+1, K+1 )
  831:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
  832:      $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
  833:      $                     ALPHAI( K ) )
  834:                ALPHAI( K+1 ) = -ALPHAI( K )
  835: *
  836:             ELSE
  837: *
  838:                IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
  839: *
  840: *                 If B(K,K) is negative, make it positive
  841: *
  842:                   DO 70 I = 1, N
  843:                      A( K, I ) = -A( K, I )
  844:                      B( K, I ) = -B( K, I )
  845:                      IF( WANTQ ) Q( I, K ) = -Q( I, K )
  846:    70             CONTINUE
  847:                END IF
  848: *
  849:                ALPHAR( K ) = A( K, K )
  850:                ALPHAI( K ) = ZERO
  851:                BETA( K ) = B( K, K )
  852: *
  853:             END IF
  854:          END IF
  855:    80 CONTINUE
  856: *
  857:       WORK( 1 ) = LWMIN
  858:       IWORK( 1 ) = LIWMIN
  859: *
  860:       RETURN
  861: *
  862: *     End of DTGSEN
  863: *
  864:       END

CVSweb interface <joel.bertrand@systella.fr>