Annotation of rpl/lapack/lapack/dtgsen.f, revision 1.21

1.10      bertrand    1: *> \brief \b DTGSEN
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download DTGSEN + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsen.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsen.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsen.f">
1.10      bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                     22: *                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
                     23: *                          PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
1.17      bertrand   24: *
1.10      bertrand   25: *       .. Scalar Arguments ..
                     26: *       LOGICAL            WANTQ, WANTZ
                     27: *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                     28: *      $                   M, N
                     29: *       DOUBLE PRECISION   PL, PR
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       LOGICAL            SELECT( * )
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     35: *      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
                     36: *      $                   WORK( * ), Z( LDZ, * )
                     37: *       ..
1.17      bertrand   38: *
1.10      bertrand   39: *
                     40: *> \par Purpose:
                     41: *  =============
                     42: *>
                     43: *> \verbatim
                     44: *>
                     45: *> DTGSEN reorders the generalized real Schur decomposition of a real
                     46: *> matrix pair (A, B) (in terms of an orthonormal equivalence trans-
                     47: *> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
                     48: *> appears in the leading diagonal blocks of the upper quasi-triangular
                     49: *> matrix A and the upper triangular B. The leading columns of Q and
                     50: *> Z form orthonormal bases of the corresponding left and right eigen-
                     51: *> spaces (deflating subspaces). (A, B) must be in generalized real
                     52: *> Schur canonical form (as returned by DGGES), i.e. A is block upper
                     53: *> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
                     54: *> triangular.
                     55: *>
                     56: *> DTGSEN also computes the generalized eigenvalues
                     57: *>
                     58: *>             w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
                     59: *>
                     60: *> of the reordered matrix pair (A, B).
                     61: *>
                     62: *> Optionally, DTGSEN computes the estimates of reciprocal condition
                     63: *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
                     64: *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
                     65: *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
                     66: *> the selected cluster and the eigenvalues outside the cluster, resp.,
                     67: *> and norms of "projections" onto left and right eigenspaces w.r.t.
                     68: *> the selected cluster in the (1,1)-block.
                     69: *> \endverbatim
                     70: *
                     71: *  Arguments:
                     72: *  ==========
                     73: *
                     74: *> \param[in] IJOB
                     75: *> \verbatim
                     76: *>          IJOB is INTEGER
                     77: *>          Specifies whether condition numbers are required for the
                     78: *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
                     79: *>          (Difu and Difl):
                     80: *>           =0: Only reorder w.r.t. SELECT. No extras.
                     81: *>           =1: Reciprocal of norms of "projections" onto left and right
                     82: *>               eigenspaces w.r.t. the selected cluster (PL and PR).
                     83: *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
                     84: *>               (DIF(1:2)).
                     85: *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
                     86: *>               (DIF(1:2)).
                     87: *>               About 5 times as expensive as IJOB = 2.
                     88: *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
                     89: *>               version to get it all.
                     90: *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] WANTQ
                     94: *> \verbatim
                     95: *>          WANTQ is LOGICAL
                     96: *>          .TRUE. : update the left transformation matrix Q;
                     97: *>          .FALSE.: do not update Q.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] WANTZ
                    101: *> \verbatim
                    102: *>          WANTZ is LOGICAL
                    103: *>          .TRUE. : update the right transformation matrix Z;
                    104: *>          .FALSE.: do not update Z.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] SELECT
                    108: *> \verbatim
                    109: *>          SELECT is LOGICAL array, dimension (N)
                    110: *>          SELECT specifies the eigenvalues in the selected cluster.
                    111: *>          To select a real eigenvalue w(j), SELECT(j) must be set to
                    112: *>          .TRUE.. To select a complex conjugate pair of eigenvalues
                    113: *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
                    114: *>          either SELECT(j) or SELECT(j+1) or both must be set to
                    115: *>          .TRUE.; a complex conjugate pair of eigenvalues must be
                    116: *>          either both included in the cluster or both excluded.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] N
                    120: *> \verbatim
                    121: *>          N is INTEGER
                    122: *>          The order of the matrices A and B. N >= 0.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in,out] A
                    126: *> \verbatim
                    127: *>          A is DOUBLE PRECISION array, dimension(LDA,N)
                    128: *>          On entry, the upper quasi-triangular matrix A, with (A, B) in
                    129: *>          generalized real Schur canonical form.
                    130: *>          On exit, A is overwritten by the reordered matrix A.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] LDA
                    134: *> \verbatim
                    135: *>          LDA is INTEGER
                    136: *>          The leading dimension of the array A. LDA >= max(1,N).
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in,out] B
                    140: *> \verbatim
                    141: *>          B is DOUBLE PRECISION array, dimension(LDB,N)
                    142: *>          On entry, the upper triangular matrix B, with (A, B) in
                    143: *>          generalized real Schur canonical form.
                    144: *>          On exit, B is overwritten by the reordered matrix B.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] LDB
                    148: *> \verbatim
                    149: *>          LDB is INTEGER
                    150: *>          The leading dimension of the array B. LDB >= max(1,N).
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] ALPHAR
                    154: *> \verbatim
                    155: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] ALPHAI
                    159: *> \verbatim
                    160: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] BETA
                    164: *> \verbatim
                    165: *>          BETA is DOUBLE PRECISION array, dimension (N)
                    166: *>
                    167: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                    168: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
                    169: *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
                    170: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
                    171: *>          the real generalized Schur form of (A,B) were further reduced
                    172: *>          to triangular form using complex unitary transformations.
                    173: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                    174: *>          positive, then the j-th and (j+1)-st eigenvalues are a
                    175: *>          complex conjugate pair, with ALPHAI(j+1) negative.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in,out] Q
                    179: *> \verbatim
                    180: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                    181: *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
                    182: *>          On exit, Q has been postmultiplied by the left orthogonal
                    183: *>          transformation matrix which reorder (A, B); The leading M
                    184: *>          columns of Q form orthonormal bases for the specified pair of
                    185: *>          left eigenspaces (deflating subspaces).
                    186: *>          If WANTQ = .FALSE., Q is not referenced.
                    187: *> \endverbatim
                    188: *>
                    189: *> \param[in] LDQ
                    190: *> \verbatim
                    191: *>          LDQ is INTEGER
                    192: *>          The leading dimension of the array Q.  LDQ >= 1;
                    193: *>          and if WANTQ = .TRUE., LDQ >= N.
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[in,out] Z
                    197: *> \verbatim
                    198: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
                    199: *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
                    200: *>          On exit, Z has been postmultiplied by the left orthogonal
                    201: *>          transformation matrix which reorder (A, B); The leading M
                    202: *>          columns of Z form orthonormal bases for the specified pair of
                    203: *>          left eigenspaces (deflating subspaces).
                    204: *>          If WANTZ = .FALSE., Z is not referenced.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[in] LDZ
                    208: *> \verbatim
                    209: *>          LDZ is INTEGER
                    210: *>          The leading dimension of the array Z. LDZ >= 1;
                    211: *>          If WANTZ = .TRUE., LDZ >= N.
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[out] M
                    215: *> \verbatim
                    216: *>          M is INTEGER
                    217: *>          The dimension of the specified pair of left and right eigen-
                    218: *>          spaces (deflating subspaces). 0 <= M <= N.
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[out] PL
                    222: *> \verbatim
                    223: *>          PL is DOUBLE PRECISION
                    224: *> \endverbatim
1.19      bertrand  225: *>
1.10      bertrand  226: *> \param[out] PR
                    227: *> \verbatim
                    228: *>          PR is DOUBLE PRECISION
                    229: *>
                    230: *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
                    231: *>          reciprocal of the norm of "projections" onto left and right
                    232: *>          eigenspaces with respect to the selected cluster.
                    233: *>          0 < PL, PR <= 1.
                    234: *>          If M = 0 or M = N, PL = PR  = 1.
                    235: *>          If IJOB = 0, 2 or 3, PL and PR are not referenced.
                    236: *> \endverbatim
                    237: *>
                    238: *> \param[out] DIF
                    239: *> \verbatim
                    240: *>          DIF is DOUBLE PRECISION array, dimension (2).
                    241: *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
                    242: *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
                    243: *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
                    244: *>          estimates of Difu and Difl.
                    245: *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
                    246: *>          If IJOB = 0 or 1, DIF is not referenced.
                    247: *> \endverbatim
                    248: *>
                    249: *> \param[out] WORK
                    250: *> \verbatim
1.19      bertrand  251: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1.10      bertrand  252: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    253: *> \endverbatim
                    254: *>
                    255: *> \param[in] LWORK
                    256: *> \verbatim
                    257: *>          LWORK is INTEGER
                    258: *>          The dimension of the array WORK. LWORK >=  4*N+16.
                    259: *>          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
                    260: *>          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
                    261: *>
                    262: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    263: *>          only calculates the optimal size of the WORK array, returns
                    264: *>          this value as the first entry of the WORK array, and no error
                    265: *>          message related to LWORK is issued by XERBLA.
                    266: *> \endverbatim
                    267: *>
                    268: *> \param[out] IWORK
                    269: *> \verbatim
                    270: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    271: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    272: *> \endverbatim
                    273: *>
                    274: *> \param[in] LIWORK
                    275: *> \verbatim
                    276: *>          LIWORK is INTEGER
                    277: *>          The dimension of the array IWORK. LIWORK >= 1.
                    278: *>          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
                    279: *>          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
                    280: *>
                    281: *>          If LIWORK = -1, then a workspace query is assumed; the
                    282: *>          routine only calculates the optimal size of the IWORK array,
                    283: *>          returns this value as the first entry of the IWORK array, and
                    284: *>          no error message related to LIWORK is issued by XERBLA.
                    285: *> \endverbatim
                    286: *>
                    287: *> \param[out] INFO
                    288: *> \verbatim
                    289: *>          INFO is INTEGER
                    290: *>            =0: Successful exit.
                    291: *>            <0: If INFO = -i, the i-th argument had an illegal value.
                    292: *>            =1: Reordering of (A, B) failed because the transformed
                    293: *>                matrix pair (A, B) would be too far from generalized
                    294: *>                Schur form; the problem is very ill-conditioned.
                    295: *>                (A, B) may have been partially reordered.
                    296: *>                If requested, 0 is returned in DIF(*), PL and PR.
                    297: *> \endverbatim
                    298: *
                    299: *  Authors:
                    300: *  ========
                    301: *
1.17      bertrand  302: *> \author Univ. of Tennessee
                    303: *> \author Univ. of California Berkeley
                    304: *> \author Univ. of Colorado Denver
                    305: *> \author NAG Ltd.
1.10      bertrand  306: *
                    307: *> \ingroup doubleOTHERcomputational
                    308: *
                    309: *> \par Further Details:
                    310: *  =====================
                    311: *>
                    312: *> \verbatim
                    313: *>
                    314: *>  DTGSEN first collects the selected eigenvalues by computing
                    315: *>  orthogonal U and W that move them to the top left corner of (A, B).
                    316: *>  In other words, the selected eigenvalues are the eigenvalues of
                    317: *>  (A11, B11) in:
                    318: *>
                    319: *>              U**T*(A, B)*W = (A11 A12) (B11 B12) n1
                    320: *>                              ( 0  A22),( 0  B22) n2
                    321: *>                                n1  n2    n1  n2
                    322: *>
                    323: *>  where N = n1+n2 and U**T means the transpose of U. The first n1 columns
                    324: *>  of U and W span the specified pair of left and right eigenspaces
                    325: *>  (deflating subspaces) of (A, B).
                    326: *>
                    327: *>  If (A, B) has been obtained from the generalized real Schur
                    328: *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
                    329: *>  reordered generalized real Schur form of (C, D) is given by
                    330: *>
                    331: *>           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
                    332: *>
                    333: *>  and the first n1 columns of Q*U and Z*W span the corresponding
                    334: *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
                    335: *>
                    336: *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
                    337: *>  then its value may differ significantly from its value before
                    338: *>  reordering.
                    339: *>
                    340: *>  The reciprocal condition numbers of the left and right eigenspaces
                    341: *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
                    342: *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
                    343: *>
                    344: *>  The Difu and Difl are defined as:
                    345: *>
                    346: *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
                    347: *>  and
                    348: *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
                    349: *>
                    350: *>  where sigma-min(Zu) is the smallest singular value of the
                    351: *>  (2*n1*n2)-by-(2*n1*n2) matrix
                    352: *>
                    353: *>       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]
                    354: *>            [ kron(In2, B11)  -kron(B22**T, In1) ].
                    355: *>
                    356: *>  Here, Inx is the identity matrix of size nx and A22**T is the
                    357: *>  transpose of A22. kron(X, Y) is the Kronecker product between
                    358: *>  the matrices X and Y.
                    359: *>
                    360: *>  When DIF(2) is small, small changes in (A, B) can cause large changes
                    361: *>  in the deflating subspace. An approximate (asymptotic) bound on the
                    362: *>  maximum angular error in the computed deflating subspaces is
                    363: *>
                    364: *>       EPS * norm((A, B)) / DIF(2),
                    365: *>
                    366: *>  where EPS is the machine precision.
                    367: *>
                    368: *>  The reciprocal norm of the projectors on the left and right
                    369: *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
                    370: *>  They are computed as follows. First we compute L and R so that
                    371: *>  P*(A, B)*Q is block diagonal, where
                    372: *>
                    373: *>       P = ( I -L ) n1           Q = ( I R ) n1
                    374: *>           ( 0  I ) n2    and        ( 0 I ) n2
                    375: *>             n1 n2                    n1 n2
                    376: *>
                    377: *>  and (L, R) is the solution to the generalized Sylvester equation
                    378: *>
                    379: *>       A11*R - L*A22 = -A12
                    380: *>       B11*R - L*B22 = -B12
                    381: *>
                    382: *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
                    383: *>  An approximate (asymptotic) bound on the average absolute error of
                    384: *>  the selected eigenvalues is
                    385: *>
                    386: *>       EPS * norm((A, B)) / PL.
                    387: *>
                    388: *>  There are also global error bounds which valid for perturbations up
                    389: *>  to a certain restriction:  A lower bound (x) on the smallest
                    390: *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
                    391: *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
                    392: *>  (i.e. (A + E, B + F), is
                    393: *>
                    394: *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
                    395: *>
                    396: *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
                    397: *>
                    398: *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
                    399: *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
                    400: *>  associated with the selected cluster in the (1,1)-blocks can be
                    401: *>  bounded as
                    402: *>
                    403: *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
                    404: *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
                    405: *>
                    406: *>  See LAPACK User's Guide section 4.11 or the following references
                    407: *>  for more information.
                    408: *>
                    409: *>  Note that if the default method for computing the Frobenius-norm-
                    410: *>  based estimate DIF is not wanted (see DLATDF), then the parameter
                    411: *>  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
                    412: *>  (IJOB = 2 will be used)). See DTGSYL for more details.
                    413: *> \endverbatim
                    414: *
                    415: *> \par Contributors:
                    416: *  ==================
                    417: *>
                    418: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    419: *>     Umea University, S-901 87 Umea, Sweden.
                    420: *
                    421: *> \par References:
                    422: *  ================
                    423: *>
                    424: *> \verbatim
                    425: *>
                    426: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    427: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    428: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    429: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    430: *>
                    431: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    432: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    433: *>      Estimation: Theory, Algorithms and Software,
                    434: *>      Report UMINF - 94.04, Department of Computing Science, Umea
                    435: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
                    436: *>      Note 87. To appear in Numerical Algorithms, 1996.
                    437: *>
                    438: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
                    439: *>      for Solving the Generalized Sylvester Equation and Estimating the
                    440: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
                    441: *>      Department of Computing Science, Umea University, S-901 87 Umea,
                    442: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
                    443: *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
                    444: *>      1996.
                    445: *> \endverbatim
                    446: *>
                    447: *  =====================================================================
1.1       bertrand  448:       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                    449:      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
                    450:      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
                    451: *
1.21    ! bertrand  452: *  -- LAPACK computational routine --
1.1       bertrand  453: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    454: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    455: *
                    456: *     .. Scalar Arguments ..
                    457:       LOGICAL            WANTQ, WANTZ
                    458:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                    459:      $                   M, N
                    460:       DOUBLE PRECISION   PL, PR
                    461: *     ..
                    462: *     .. Array Arguments ..
                    463:       LOGICAL            SELECT( * )
                    464:       INTEGER            IWORK( * )
                    465:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    466:      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
                    467:      $                   WORK( * ), Z( LDZ, * )
                    468: *     ..
                    469: *
                    470: *  =====================================================================
                    471: *
                    472: *     .. Parameters ..
                    473:       INTEGER            IDIFJB
                    474:       PARAMETER          ( IDIFJB = 3 )
                    475:       DOUBLE PRECISION   ZERO, ONE
                    476:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    477: *     ..
                    478: *     .. Local Scalars ..
                    479:       LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
                    480:      $                   WANTP
                    481:       INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
                    482:      $                   MN2, N1, N2
                    483:       DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
                    484: *     ..
                    485: *     .. Local Arrays ..
                    486:       INTEGER            ISAVE( 3 )
                    487: *     ..
                    488: *     .. External Subroutines ..
                    489:       EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
                    490:      $                   XERBLA
                    491: *     ..
                    492: *     .. External Functions ..
                    493:       DOUBLE PRECISION   DLAMCH
                    494:       EXTERNAL           DLAMCH
                    495: *     ..
                    496: *     .. Intrinsic Functions ..
                    497:       INTRINSIC          MAX, SIGN, SQRT
                    498: *     ..
                    499: *     .. Executable Statements ..
                    500: *
                    501: *     Decode and test the input parameters
                    502: *
                    503:       INFO = 0
                    504:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    505: *
                    506:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
                    507:          INFO = -1
                    508:       ELSE IF( N.LT.0 ) THEN
                    509:          INFO = -5
                    510:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    511:          INFO = -7
                    512:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    513:          INFO = -9
                    514:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    515:          INFO = -14
                    516:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    517:          INFO = -16
                    518:       END IF
                    519: *
                    520:       IF( INFO.NE.0 ) THEN
                    521:          CALL XERBLA( 'DTGSEN', -INFO )
                    522:          RETURN
                    523:       END IF
                    524: *
                    525: *     Get machine constants
                    526: *
                    527:       EPS = DLAMCH( 'P' )
                    528:       SMLNUM = DLAMCH( 'S' ) / EPS
                    529:       IERR = 0
                    530: *
                    531:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
                    532:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
                    533:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
                    534:       WANTD = WANTD1 .OR. WANTD2
                    535: *
                    536: *     Set M to the dimension of the specified pair of deflating
                    537: *     subspaces.
                    538: *
                    539:       M = 0
                    540:       PAIR = .FALSE.
1.15      bertrand  541:       IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
1.1       bertrand  542:       DO 10 K = 1, N
                    543:          IF( PAIR ) THEN
                    544:             PAIR = .FALSE.
                    545:          ELSE
                    546:             IF( K.LT.N ) THEN
                    547:                IF( A( K+1, K ).EQ.ZERO ) THEN
                    548:                   IF( SELECT( K ) )
                    549:      $               M = M + 1
                    550:                ELSE
                    551:                   PAIR = .TRUE.
                    552:                   IF( SELECT( K ) .OR. SELECT( K+1 ) )
                    553:      $               M = M + 2
                    554:                END IF
                    555:             ELSE
                    556:                IF( SELECT( N ) )
                    557:      $            M = M + 1
                    558:             END IF
                    559:          END IF
                    560:    10 CONTINUE
1.15      bertrand  561:       END IF
1.1       bertrand  562: *
                    563:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    564:          LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
                    565:          LIWMIN = MAX( 1, N+6 )
                    566:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
                    567:          LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
                    568:          LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
                    569:       ELSE
                    570:          LWMIN = MAX( 1, 4*N+16 )
                    571:          LIWMIN = 1
                    572:       END IF
                    573: *
                    574:       WORK( 1 ) = LWMIN
                    575:       IWORK( 1 ) = LIWMIN
                    576: *
                    577:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    578:          INFO = -22
                    579:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    580:          INFO = -24
                    581:       END IF
                    582: *
                    583:       IF( INFO.NE.0 ) THEN
                    584:          CALL XERBLA( 'DTGSEN', -INFO )
                    585:          RETURN
                    586:       ELSE IF( LQUERY ) THEN
                    587:          RETURN
                    588:       END IF
                    589: *
                    590: *     Quick return if possible.
                    591: *
                    592:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    593:          IF( WANTP ) THEN
                    594:             PL = ONE
                    595:             PR = ONE
                    596:          END IF
                    597:          IF( WANTD ) THEN
                    598:             DSCALE = ZERO
                    599:             DSUM = ONE
                    600:             DO 20 I = 1, N
                    601:                CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
                    602:                CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
                    603:    20       CONTINUE
                    604:             DIF( 1 ) = DSCALE*SQRT( DSUM )
                    605:             DIF( 2 ) = DIF( 1 )
                    606:          END IF
                    607:          GO TO 60
                    608:       END IF
                    609: *
                    610: *     Collect the selected blocks at the top-left corner of (A, B).
                    611: *
                    612:       KS = 0
                    613:       PAIR = .FALSE.
                    614:       DO 30 K = 1, N
                    615:          IF( PAIR ) THEN
                    616:             PAIR = .FALSE.
                    617:          ELSE
                    618: *
                    619:             SWAP = SELECT( K )
                    620:             IF( K.LT.N ) THEN
                    621:                IF( A( K+1, K ).NE.ZERO ) THEN
                    622:                   PAIR = .TRUE.
                    623:                   SWAP = SWAP .OR. SELECT( K+1 )
                    624:                END IF
                    625:             END IF
                    626: *
                    627:             IF( SWAP ) THEN
                    628:                KS = KS + 1
                    629: *
                    630: *              Swap the K-th block to position KS.
                    631: *              Perform the reordering of diagonal blocks in (A, B)
                    632: *              by orthogonal transformation matrices and update
                    633: *              Q and Z accordingly (if requested):
                    634: *
                    635:                KK = K
                    636:                IF( K.NE.KS )
                    637:      $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
                    638:      $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
                    639: *
                    640:                IF( IERR.GT.0 ) THEN
                    641: *
                    642: *                 Swap is rejected: exit.
                    643: *
                    644:                   INFO = 1
                    645:                   IF( WANTP ) THEN
                    646:                      PL = ZERO
                    647:                      PR = ZERO
                    648:                   END IF
                    649:                   IF( WANTD ) THEN
                    650:                      DIF( 1 ) = ZERO
                    651:                      DIF( 2 ) = ZERO
                    652:                   END IF
                    653:                   GO TO 60
                    654:                END IF
                    655: *
                    656:                IF( PAIR )
                    657:      $            KS = KS + 1
                    658:             END IF
                    659:          END IF
                    660:    30 CONTINUE
                    661:       IF( WANTP ) THEN
                    662: *
                    663: *        Solve generalized Sylvester equation for R and L
                    664: *        and compute PL and PR.
                    665: *
                    666:          N1 = M
                    667:          N2 = N - M
                    668:          I = N1 + 1
                    669:          IJB = 0
                    670:          CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
                    671:          CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
                    672:      $                N1 )
                    673:          CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    674:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
                    675:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    676:      $                LWORK-2*N1*N2, IWORK, IERR )
                    677: *
                    678: *        Estimate the reciprocal of norms of "projections" onto left
                    679: *        and right eigenspaces.
                    680: *
                    681:          RDSCAL = ZERO
                    682:          DSUM = ONE
                    683:          CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
                    684:          PL = RDSCAL*SQRT( DSUM )
                    685:          IF( PL.EQ.ZERO ) THEN
                    686:             PL = ONE
                    687:          ELSE
                    688:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
                    689:          END IF
                    690:          RDSCAL = ZERO
                    691:          DSUM = ONE
                    692:          CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
                    693:          PR = RDSCAL*SQRT( DSUM )
                    694:          IF( PR.EQ.ZERO ) THEN
                    695:             PR = ONE
                    696:          ELSE
                    697:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
                    698:          END IF
                    699:       END IF
                    700: *
                    701:       IF( WANTD ) THEN
                    702: *
                    703: *        Compute estimates of Difu and Difl.
                    704: *
                    705:          IF( WANTD1 ) THEN
                    706:             N1 = M
                    707:             N2 = N - M
                    708:             I = N1 + 1
                    709:             IJB = IDIFJB
                    710: *
                    711: *           Frobenius norm-based Difu-estimate.
                    712: *
                    713:             CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    714:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
                    715:      $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
                    716:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    717: *
                    718: *           Frobenius norm-based Difl-estimate.
                    719: *
                    720:             CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
                    721:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
                    722:      $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
                    723:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    724:          ELSE
                    725: *
                    726: *
                    727: *           Compute 1-norm-based estimates of Difu and Difl using
                    728: *           reversed communication with DLACN2. In each step a
                    729: *           generalized Sylvester equation or a transposed variant
                    730: *           is solved.
                    731: *
                    732:             KASE = 0
                    733:             N1 = M
                    734:             N2 = N - M
                    735:             I = N1 + 1
                    736:             IJB = 0
                    737:             MN2 = 2*N1*N2
                    738: *
                    739: *           1-norm-based estimate of Difu.
                    740: *
                    741:    40       CONTINUE
                    742:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
                    743:      $                   KASE, ISAVE )
                    744:             IF( KASE.NE.0 ) THEN
                    745:                IF( KASE.EQ.1 ) THEN
                    746: *
                    747: *                 Solve generalized Sylvester equation.
                    748: *
                    749:                   CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    750:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    751:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    752:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    753:      $                         IERR )
                    754:                ELSE
                    755: *
                    756: *                 Solve the transposed variant.
                    757: *
                    758:                   CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    759:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    760:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    761:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    762:      $                         IERR )
                    763:                END IF
                    764:                GO TO 40
                    765:             END IF
                    766:             DIF( 1 ) = DSCALE / DIF( 1 )
                    767: *
                    768: *           1-norm-based estimate of Difl.
                    769: *
                    770:    50       CONTINUE
                    771:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
                    772:      $                   KASE, ISAVE )
                    773:             IF( KASE.NE.0 ) THEN
                    774:                IF( KASE.EQ.1 ) THEN
                    775: *
                    776: *                 Solve generalized Sylvester equation.
                    777: *
                    778:                   CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    779:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    780:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    781:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    782:      $                         IERR )
                    783:                ELSE
                    784: *
                    785: *                 Solve the transposed variant.
                    786: *
                    787:                   CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    788:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    789:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    790:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    791:      $                         IERR )
                    792:                END IF
                    793:                GO TO 50
                    794:             END IF
                    795:             DIF( 2 ) = DSCALE / DIF( 2 )
                    796: *
                    797:          END IF
                    798:       END IF
                    799: *
                    800:    60 CONTINUE
                    801: *
                    802: *     Compute generalized eigenvalues of reordered pair (A, B) and
                    803: *     normalize the generalized Schur form.
                    804: *
                    805:       PAIR = .FALSE.
                    806:       DO 80 K = 1, N
                    807:          IF( PAIR ) THEN
                    808:             PAIR = .FALSE.
                    809:          ELSE
                    810: *
                    811:             IF( K.LT.N ) THEN
                    812:                IF( A( K+1, K ).NE.ZERO ) THEN
                    813:                   PAIR = .TRUE.
                    814:                END IF
                    815:             END IF
                    816: *
                    817:             IF( PAIR ) THEN
                    818: *
                    819: *             Compute the eigenvalue(s) at position K.
                    820: *
                    821:                WORK( 1 ) = A( K, K )
                    822:                WORK( 2 ) = A( K+1, K )
                    823:                WORK( 3 ) = A( K, K+1 )
                    824:                WORK( 4 ) = A( K+1, K+1 )
                    825:                WORK( 5 ) = B( K, K )
                    826:                WORK( 6 ) = B( K+1, K )
                    827:                WORK( 7 ) = B( K, K+1 )
                    828:                WORK( 8 ) = B( K+1, K+1 )
                    829:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
                    830:      $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
                    831:      $                     ALPHAI( K ) )
                    832:                ALPHAI( K+1 ) = -ALPHAI( K )
                    833: *
                    834:             ELSE
                    835: *
                    836:                IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
                    837: *
                    838: *                 If B(K,K) is negative, make it positive
                    839: *
                    840:                   DO 70 I = 1, N
                    841:                      A( K, I ) = -A( K, I )
                    842:                      B( K, I ) = -B( K, I )
                    843:                      IF( WANTQ ) Q( I, K ) = -Q( I, K )
                    844:    70             CONTINUE
                    845:                END IF
                    846: *
                    847:                ALPHAR( K ) = A( K, K )
                    848:                ALPHAI( K ) = ZERO
                    849:                BETA( K ) = B( K, K )
                    850: *
                    851:             END IF
                    852:          END IF
                    853:    80 CONTINUE
                    854: *
                    855:       WORK( 1 ) = LWMIN
                    856:       IWORK( 1 ) = LIWMIN
                    857: *
                    858:       RETURN
                    859: *
                    860: *     End of DTGSEN
                    861: *
                    862:       END

CVSweb interface <joel.bertrand@systella.fr>