Annotation of rpl/lapack/lapack/dtgsen.f, revision 1.10

1.10    ! bertrand    1: *> \brief \b DTGSEN
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DTGSEN + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsen.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsen.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsen.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
        !            22: *                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
        !            23: *                          PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       LOGICAL            WANTQ, WANTZ
        !            27: *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
        !            28: *      $                   M, N
        !            29: *       DOUBLE PRECISION   PL, PR
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       LOGICAL            SELECT( * )
        !            33: *       INTEGER            IWORK( * )
        !            34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            35: *      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
        !            36: *      $                   WORK( * ), Z( LDZ, * )
        !            37: *       ..
        !            38: *  
        !            39: *
        !            40: *> \par Purpose:
        !            41: *  =============
        !            42: *>
        !            43: *> \verbatim
        !            44: *>
        !            45: *> DTGSEN reorders the generalized real Schur decomposition of a real
        !            46: *> matrix pair (A, B) (in terms of an orthonormal equivalence trans-
        !            47: *> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
        !            48: *> appears in the leading diagonal blocks of the upper quasi-triangular
        !            49: *> matrix A and the upper triangular B. The leading columns of Q and
        !            50: *> Z form orthonormal bases of the corresponding left and right eigen-
        !            51: *> spaces (deflating subspaces). (A, B) must be in generalized real
        !            52: *> Schur canonical form (as returned by DGGES), i.e. A is block upper
        !            53: *> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
        !            54: *> triangular.
        !            55: *>
        !            56: *> DTGSEN also computes the generalized eigenvalues
        !            57: *>
        !            58: *>             w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
        !            59: *>
        !            60: *> of the reordered matrix pair (A, B).
        !            61: *>
        !            62: *> Optionally, DTGSEN computes the estimates of reciprocal condition
        !            63: *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
        !            64: *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
        !            65: *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
        !            66: *> the selected cluster and the eigenvalues outside the cluster, resp.,
        !            67: *> and norms of "projections" onto left and right eigenspaces w.r.t.
        !            68: *> the selected cluster in the (1,1)-block.
        !            69: *> \endverbatim
        !            70: *
        !            71: *  Arguments:
        !            72: *  ==========
        !            73: *
        !            74: *> \param[in] IJOB
        !            75: *> \verbatim
        !            76: *>          IJOB is INTEGER
        !            77: *>          Specifies whether condition numbers are required for the
        !            78: *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
        !            79: *>          (Difu and Difl):
        !            80: *>           =0: Only reorder w.r.t. SELECT. No extras.
        !            81: *>           =1: Reciprocal of norms of "projections" onto left and right
        !            82: *>               eigenspaces w.r.t. the selected cluster (PL and PR).
        !            83: *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
        !            84: *>               (DIF(1:2)).
        !            85: *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
        !            86: *>               (DIF(1:2)).
        !            87: *>               About 5 times as expensive as IJOB = 2.
        !            88: *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
        !            89: *>               version to get it all.
        !            90: *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] WANTQ
        !            94: *> \verbatim
        !            95: *>          WANTQ is LOGICAL
        !            96: *>          .TRUE. : update the left transformation matrix Q;
        !            97: *>          .FALSE.: do not update Q.
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in] WANTZ
        !           101: *> \verbatim
        !           102: *>          WANTZ is LOGICAL
        !           103: *>          .TRUE. : update the right transformation matrix Z;
        !           104: *>          .FALSE.: do not update Z.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] SELECT
        !           108: *> \verbatim
        !           109: *>          SELECT is LOGICAL array, dimension (N)
        !           110: *>          SELECT specifies the eigenvalues in the selected cluster.
        !           111: *>          To select a real eigenvalue w(j), SELECT(j) must be set to
        !           112: *>          .TRUE.. To select a complex conjugate pair of eigenvalues
        !           113: *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
        !           114: *>          either SELECT(j) or SELECT(j+1) or both must be set to
        !           115: *>          .TRUE.; a complex conjugate pair of eigenvalues must be
        !           116: *>          either both included in the cluster or both excluded.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[in] N
        !           120: *> \verbatim
        !           121: *>          N is INTEGER
        !           122: *>          The order of the matrices A and B. N >= 0.
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[in,out] A
        !           126: *> \verbatim
        !           127: *>          A is DOUBLE PRECISION array, dimension(LDA,N)
        !           128: *>          On entry, the upper quasi-triangular matrix A, with (A, B) in
        !           129: *>          generalized real Schur canonical form.
        !           130: *>          On exit, A is overwritten by the reordered matrix A.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] LDA
        !           134: *> \verbatim
        !           135: *>          LDA is INTEGER
        !           136: *>          The leading dimension of the array A. LDA >= max(1,N).
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in,out] B
        !           140: *> \verbatim
        !           141: *>          B is DOUBLE PRECISION array, dimension(LDB,N)
        !           142: *>          On entry, the upper triangular matrix B, with (A, B) in
        !           143: *>          generalized real Schur canonical form.
        !           144: *>          On exit, B is overwritten by the reordered matrix B.
        !           145: *> \endverbatim
        !           146: *>
        !           147: *> \param[in] LDB
        !           148: *> \verbatim
        !           149: *>          LDB is INTEGER
        !           150: *>          The leading dimension of the array B. LDB >= max(1,N).
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[out] ALPHAR
        !           154: *> \verbatim
        !           155: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[out] ALPHAI
        !           159: *> \verbatim
        !           160: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[out] BETA
        !           164: *> \verbatim
        !           165: *>          BETA is DOUBLE PRECISION array, dimension (N)
        !           166: *>
        !           167: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
        !           168: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
        !           169: *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
        !           170: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
        !           171: *>          the real generalized Schur form of (A,B) were further reduced
        !           172: *>          to triangular form using complex unitary transformations.
        !           173: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
        !           174: *>          positive, then the j-th and (j+1)-st eigenvalues are a
        !           175: *>          complex conjugate pair, with ALPHAI(j+1) negative.
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[in,out] Q
        !           179: *> \verbatim
        !           180: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
        !           181: *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
        !           182: *>          On exit, Q has been postmultiplied by the left orthogonal
        !           183: *>          transformation matrix which reorder (A, B); The leading M
        !           184: *>          columns of Q form orthonormal bases for the specified pair of
        !           185: *>          left eigenspaces (deflating subspaces).
        !           186: *>          If WANTQ = .FALSE., Q is not referenced.
        !           187: *> \endverbatim
        !           188: *>
        !           189: *> \param[in] LDQ
        !           190: *> \verbatim
        !           191: *>          LDQ is INTEGER
        !           192: *>          The leading dimension of the array Q.  LDQ >= 1;
        !           193: *>          and if WANTQ = .TRUE., LDQ >= N.
        !           194: *> \endverbatim
        !           195: *>
        !           196: *> \param[in,out] Z
        !           197: *> \verbatim
        !           198: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
        !           199: *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
        !           200: *>          On exit, Z has been postmultiplied by the left orthogonal
        !           201: *>          transformation matrix which reorder (A, B); The leading M
        !           202: *>          columns of Z form orthonormal bases for the specified pair of
        !           203: *>          left eigenspaces (deflating subspaces).
        !           204: *>          If WANTZ = .FALSE., Z is not referenced.
        !           205: *> \endverbatim
        !           206: *>
        !           207: *> \param[in] LDZ
        !           208: *> \verbatim
        !           209: *>          LDZ is INTEGER
        !           210: *>          The leading dimension of the array Z. LDZ >= 1;
        !           211: *>          If WANTZ = .TRUE., LDZ >= N.
        !           212: *> \endverbatim
        !           213: *>
        !           214: *> \param[out] M
        !           215: *> \verbatim
        !           216: *>          M is INTEGER
        !           217: *>          The dimension of the specified pair of left and right eigen-
        !           218: *>          spaces (deflating subspaces). 0 <= M <= N.
        !           219: *> \endverbatim
        !           220: *>
        !           221: *> \param[out] PL
        !           222: *> \verbatim
        !           223: *>          PL is DOUBLE PRECISION
        !           224: *> \endverbatim
        !           225: 
        !           226: *> \param[out] PR
        !           227: *> \verbatim
        !           228: *>          PR is DOUBLE PRECISION
        !           229: *>
        !           230: *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
        !           231: *>          reciprocal of the norm of "projections" onto left and right
        !           232: *>          eigenspaces with respect to the selected cluster.
        !           233: *>          0 < PL, PR <= 1.
        !           234: *>          If M = 0 or M = N, PL = PR  = 1.
        !           235: *>          If IJOB = 0, 2 or 3, PL and PR are not referenced.
        !           236: *> \endverbatim
        !           237: *>
        !           238: *> \param[out] DIF
        !           239: *> \verbatim
        !           240: *>          DIF is DOUBLE PRECISION array, dimension (2).
        !           241: *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
        !           242: *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
        !           243: *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
        !           244: *>          estimates of Difu and Difl.
        !           245: *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
        !           246: *>          If IJOB = 0 or 1, DIF is not referenced.
        !           247: *> \endverbatim
        !           248: *>
        !           249: *> \param[out] WORK
        !           250: *> \verbatim
        !           251: *>          WORK is DOUBLE PRECISION array,
        !           252: *>          dimension (MAX(1,LWORK)) 
        !           253: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           254: *> \endverbatim
        !           255: *>
        !           256: *> \param[in] LWORK
        !           257: *> \verbatim
        !           258: *>          LWORK is INTEGER
        !           259: *>          The dimension of the array WORK. LWORK >=  4*N+16.
        !           260: *>          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
        !           261: *>          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
        !           262: *>
        !           263: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           264: *>          only calculates the optimal size of the WORK array, returns
        !           265: *>          this value as the first entry of the WORK array, and no error
        !           266: *>          message related to LWORK is issued by XERBLA.
        !           267: *> \endverbatim
        !           268: *>
        !           269: *> \param[out] IWORK
        !           270: *> \verbatim
        !           271: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           272: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           273: *> \endverbatim
        !           274: *>
        !           275: *> \param[in] LIWORK
        !           276: *> \verbatim
        !           277: *>          LIWORK is INTEGER
        !           278: *>          The dimension of the array IWORK. LIWORK >= 1.
        !           279: *>          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
        !           280: *>          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
        !           281: *>
        !           282: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           283: *>          routine only calculates the optimal size of the IWORK array,
        !           284: *>          returns this value as the first entry of the IWORK array, and
        !           285: *>          no error message related to LIWORK is issued by XERBLA.
        !           286: *> \endverbatim
        !           287: *>
        !           288: *> \param[out] INFO
        !           289: *> \verbatim
        !           290: *>          INFO is INTEGER
        !           291: *>            =0: Successful exit.
        !           292: *>            <0: If INFO = -i, the i-th argument had an illegal value.
        !           293: *>            =1: Reordering of (A, B) failed because the transformed
        !           294: *>                matrix pair (A, B) would be too far from generalized
        !           295: *>                Schur form; the problem is very ill-conditioned.
        !           296: *>                (A, B) may have been partially reordered.
        !           297: *>                If requested, 0 is returned in DIF(*), PL and PR.
        !           298: *> \endverbatim
        !           299: *
        !           300: *  Authors:
        !           301: *  ========
        !           302: *
        !           303: *> \author Univ. of Tennessee 
        !           304: *> \author Univ. of California Berkeley 
        !           305: *> \author Univ. of Colorado Denver 
        !           306: *> \author NAG Ltd. 
        !           307: *
        !           308: *> \date November 2011
        !           309: *
        !           310: *> \ingroup doubleOTHERcomputational
        !           311: *
        !           312: *> \par Further Details:
        !           313: *  =====================
        !           314: *>
        !           315: *> \verbatim
        !           316: *>
        !           317: *>  DTGSEN first collects the selected eigenvalues by computing
        !           318: *>  orthogonal U and W that move them to the top left corner of (A, B).
        !           319: *>  In other words, the selected eigenvalues are the eigenvalues of
        !           320: *>  (A11, B11) in:
        !           321: *>
        !           322: *>              U**T*(A, B)*W = (A11 A12) (B11 B12) n1
        !           323: *>                              ( 0  A22),( 0  B22) n2
        !           324: *>                                n1  n2    n1  n2
        !           325: *>
        !           326: *>  where N = n1+n2 and U**T means the transpose of U. The first n1 columns
        !           327: *>  of U and W span the specified pair of left and right eigenspaces
        !           328: *>  (deflating subspaces) of (A, B).
        !           329: *>
        !           330: *>  If (A, B) has been obtained from the generalized real Schur
        !           331: *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
        !           332: *>  reordered generalized real Schur form of (C, D) is given by
        !           333: *>
        !           334: *>           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
        !           335: *>
        !           336: *>  and the first n1 columns of Q*U and Z*W span the corresponding
        !           337: *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
        !           338: *>
        !           339: *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
        !           340: *>  then its value may differ significantly from its value before
        !           341: *>  reordering.
        !           342: *>
        !           343: *>  The reciprocal condition numbers of the left and right eigenspaces
        !           344: *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
        !           345: *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
        !           346: *>
        !           347: *>  The Difu and Difl are defined as:
        !           348: *>
        !           349: *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
        !           350: *>  and
        !           351: *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
        !           352: *>
        !           353: *>  where sigma-min(Zu) is the smallest singular value of the
        !           354: *>  (2*n1*n2)-by-(2*n1*n2) matrix
        !           355: *>
        !           356: *>       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]
        !           357: *>            [ kron(In2, B11)  -kron(B22**T, In1) ].
        !           358: *>
        !           359: *>  Here, Inx is the identity matrix of size nx and A22**T is the
        !           360: *>  transpose of A22. kron(X, Y) is the Kronecker product between
        !           361: *>  the matrices X and Y.
        !           362: *>
        !           363: *>  When DIF(2) is small, small changes in (A, B) can cause large changes
        !           364: *>  in the deflating subspace. An approximate (asymptotic) bound on the
        !           365: *>  maximum angular error in the computed deflating subspaces is
        !           366: *>
        !           367: *>       EPS * norm((A, B)) / DIF(2),
        !           368: *>
        !           369: *>  where EPS is the machine precision.
        !           370: *>
        !           371: *>  The reciprocal norm of the projectors on the left and right
        !           372: *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
        !           373: *>  They are computed as follows. First we compute L and R so that
        !           374: *>  P*(A, B)*Q is block diagonal, where
        !           375: *>
        !           376: *>       P = ( I -L ) n1           Q = ( I R ) n1
        !           377: *>           ( 0  I ) n2    and        ( 0 I ) n2
        !           378: *>             n1 n2                    n1 n2
        !           379: *>
        !           380: *>  and (L, R) is the solution to the generalized Sylvester equation
        !           381: *>
        !           382: *>       A11*R - L*A22 = -A12
        !           383: *>       B11*R - L*B22 = -B12
        !           384: *>
        !           385: *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
        !           386: *>  An approximate (asymptotic) bound on the average absolute error of
        !           387: *>  the selected eigenvalues is
        !           388: *>
        !           389: *>       EPS * norm((A, B)) / PL.
        !           390: *>
        !           391: *>  There are also global error bounds which valid for perturbations up
        !           392: *>  to a certain restriction:  A lower bound (x) on the smallest
        !           393: *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
        !           394: *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
        !           395: *>  (i.e. (A + E, B + F), is
        !           396: *>
        !           397: *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
        !           398: *>
        !           399: *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
        !           400: *>
        !           401: *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
        !           402: *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
        !           403: *>  associated with the selected cluster in the (1,1)-blocks can be
        !           404: *>  bounded as
        !           405: *>
        !           406: *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
        !           407: *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
        !           408: *>
        !           409: *>  See LAPACK User's Guide section 4.11 or the following references
        !           410: *>  for more information.
        !           411: *>
        !           412: *>  Note that if the default method for computing the Frobenius-norm-
        !           413: *>  based estimate DIF is not wanted (see DLATDF), then the parameter
        !           414: *>  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
        !           415: *>  (IJOB = 2 will be used)). See DTGSYL for more details.
        !           416: *> \endverbatim
        !           417: *
        !           418: *> \par Contributors:
        !           419: *  ==================
        !           420: *>
        !           421: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           422: *>     Umea University, S-901 87 Umea, Sweden.
        !           423: *
        !           424: *> \par References:
        !           425: *  ================
        !           426: *>
        !           427: *> \verbatim
        !           428: *>
        !           429: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           430: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           431: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           432: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           433: *>
        !           434: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           435: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           436: *>      Estimation: Theory, Algorithms and Software,
        !           437: *>      Report UMINF - 94.04, Department of Computing Science, Umea
        !           438: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
        !           439: *>      Note 87. To appear in Numerical Algorithms, 1996.
        !           440: *>
        !           441: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
        !           442: *>      for Solving the Generalized Sylvester Equation and Estimating the
        !           443: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
        !           444: *>      Department of Computing Science, Umea University, S-901 87 Umea,
        !           445: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
        !           446: *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
        !           447: *>      1996.
        !           448: *> \endverbatim
        !           449: *>
        !           450: *  =====================================================================
1.1       bertrand  451:       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                    452:      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
                    453:      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
                    454: *
1.10    ! bertrand  455: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  456: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    457: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  458: *     November 2011
1.1       bertrand  459: *
                    460: *     .. Scalar Arguments ..
                    461:       LOGICAL            WANTQ, WANTZ
                    462:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                    463:      $                   M, N
                    464:       DOUBLE PRECISION   PL, PR
                    465: *     ..
                    466: *     .. Array Arguments ..
                    467:       LOGICAL            SELECT( * )
                    468:       INTEGER            IWORK( * )
                    469:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    470:      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
                    471:      $                   WORK( * ), Z( LDZ, * )
                    472: *     ..
                    473: *
                    474: *  =====================================================================
                    475: *
                    476: *     .. Parameters ..
                    477:       INTEGER            IDIFJB
                    478:       PARAMETER          ( IDIFJB = 3 )
                    479:       DOUBLE PRECISION   ZERO, ONE
                    480:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    481: *     ..
                    482: *     .. Local Scalars ..
                    483:       LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
                    484:      $                   WANTP
                    485:       INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
                    486:      $                   MN2, N1, N2
                    487:       DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
                    488: *     ..
                    489: *     .. Local Arrays ..
                    490:       INTEGER            ISAVE( 3 )
                    491: *     ..
                    492: *     .. External Subroutines ..
                    493:       EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
                    494:      $                   XERBLA
                    495: *     ..
                    496: *     .. External Functions ..
                    497:       DOUBLE PRECISION   DLAMCH
                    498:       EXTERNAL           DLAMCH
                    499: *     ..
                    500: *     .. Intrinsic Functions ..
                    501:       INTRINSIC          MAX, SIGN, SQRT
                    502: *     ..
                    503: *     .. Executable Statements ..
                    504: *
                    505: *     Decode and test the input parameters
                    506: *
                    507:       INFO = 0
                    508:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    509: *
                    510:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
                    511:          INFO = -1
                    512:       ELSE IF( N.LT.0 ) THEN
                    513:          INFO = -5
                    514:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    515:          INFO = -7
                    516:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    517:          INFO = -9
                    518:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    519:          INFO = -14
                    520:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    521:          INFO = -16
                    522:       END IF
                    523: *
                    524:       IF( INFO.NE.0 ) THEN
                    525:          CALL XERBLA( 'DTGSEN', -INFO )
                    526:          RETURN
                    527:       END IF
                    528: *
                    529: *     Get machine constants
                    530: *
                    531:       EPS = DLAMCH( 'P' )
                    532:       SMLNUM = DLAMCH( 'S' ) / EPS
                    533:       IERR = 0
                    534: *
                    535:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
                    536:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
                    537:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
                    538:       WANTD = WANTD1 .OR. WANTD2
                    539: *
                    540: *     Set M to the dimension of the specified pair of deflating
                    541: *     subspaces.
                    542: *
                    543:       M = 0
                    544:       PAIR = .FALSE.
                    545:       DO 10 K = 1, N
                    546:          IF( PAIR ) THEN
                    547:             PAIR = .FALSE.
                    548:          ELSE
                    549:             IF( K.LT.N ) THEN
                    550:                IF( A( K+1, K ).EQ.ZERO ) THEN
                    551:                   IF( SELECT( K ) )
                    552:      $               M = M + 1
                    553:                ELSE
                    554:                   PAIR = .TRUE.
                    555:                   IF( SELECT( K ) .OR. SELECT( K+1 ) )
                    556:      $               M = M + 2
                    557:                END IF
                    558:             ELSE
                    559:                IF( SELECT( N ) )
                    560:      $            M = M + 1
                    561:             END IF
                    562:          END IF
                    563:    10 CONTINUE
                    564: *
                    565:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    566:          LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
                    567:          LIWMIN = MAX( 1, N+6 )
                    568:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
                    569:          LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
                    570:          LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
                    571:       ELSE
                    572:          LWMIN = MAX( 1, 4*N+16 )
                    573:          LIWMIN = 1
                    574:       END IF
                    575: *
                    576:       WORK( 1 ) = LWMIN
                    577:       IWORK( 1 ) = LIWMIN
                    578: *
                    579:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    580:          INFO = -22
                    581:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    582:          INFO = -24
                    583:       END IF
                    584: *
                    585:       IF( INFO.NE.0 ) THEN
                    586:          CALL XERBLA( 'DTGSEN', -INFO )
                    587:          RETURN
                    588:       ELSE IF( LQUERY ) THEN
                    589:          RETURN
                    590:       END IF
                    591: *
                    592: *     Quick return if possible.
                    593: *
                    594:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    595:          IF( WANTP ) THEN
                    596:             PL = ONE
                    597:             PR = ONE
                    598:          END IF
                    599:          IF( WANTD ) THEN
                    600:             DSCALE = ZERO
                    601:             DSUM = ONE
                    602:             DO 20 I = 1, N
                    603:                CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
                    604:                CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
                    605:    20       CONTINUE
                    606:             DIF( 1 ) = DSCALE*SQRT( DSUM )
                    607:             DIF( 2 ) = DIF( 1 )
                    608:          END IF
                    609:          GO TO 60
                    610:       END IF
                    611: *
                    612: *     Collect the selected blocks at the top-left corner of (A, B).
                    613: *
                    614:       KS = 0
                    615:       PAIR = .FALSE.
                    616:       DO 30 K = 1, N
                    617:          IF( PAIR ) THEN
                    618:             PAIR = .FALSE.
                    619:          ELSE
                    620: *
                    621:             SWAP = SELECT( K )
                    622:             IF( K.LT.N ) THEN
                    623:                IF( A( K+1, K ).NE.ZERO ) THEN
                    624:                   PAIR = .TRUE.
                    625:                   SWAP = SWAP .OR. SELECT( K+1 )
                    626:                END IF
                    627:             END IF
                    628: *
                    629:             IF( SWAP ) THEN
                    630:                KS = KS + 1
                    631: *
                    632: *              Swap the K-th block to position KS.
                    633: *              Perform the reordering of diagonal blocks in (A, B)
                    634: *              by orthogonal transformation matrices and update
                    635: *              Q and Z accordingly (if requested):
                    636: *
                    637:                KK = K
                    638:                IF( K.NE.KS )
                    639:      $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
                    640:      $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
                    641: *
                    642:                IF( IERR.GT.0 ) THEN
                    643: *
                    644: *                 Swap is rejected: exit.
                    645: *
                    646:                   INFO = 1
                    647:                   IF( WANTP ) THEN
                    648:                      PL = ZERO
                    649:                      PR = ZERO
                    650:                   END IF
                    651:                   IF( WANTD ) THEN
                    652:                      DIF( 1 ) = ZERO
                    653:                      DIF( 2 ) = ZERO
                    654:                   END IF
                    655:                   GO TO 60
                    656:                END IF
                    657: *
                    658:                IF( PAIR )
                    659:      $            KS = KS + 1
                    660:             END IF
                    661:          END IF
                    662:    30 CONTINUE
                    663:       IF( WANTP ) THEN
                    664: *
                    665: *        Solve generalized Sylvester equation for R and L
                    666: *        and compute PL and PR.
                    667: *
                    668:          N1 = M
                    669:          N2 = N - M
                    670:          I = N1 + 1
                    671:          IJB = 0
                    672:          CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
                    673:          CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
                    674:      $                N1 )
                    675:          CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    676:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
                    677:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    678:      $                LWORK-2*N1*N2, IWORK, IERR )
                    679: *
                    680: *        Estimate the reciprocal of norms of "projections" onto left
                    681: *        and right eigenspaces.
                    682: *
                    683:          RDSCAL = ZERO
                    684:          DSUM = ONE
                    685:          CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
                    686:          PL = RDSCAL*SQRT( DSUM )
                    687:          IF( PL.EQ.ZERO ) THEN
                    688:             PL = ONE
                    689:          ELSE
                    690:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
                    691:          END IF
                    692:          RDSCAL = ZERO
                    693:          DSUM = ONE
                    694:          CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
                    695:          PR = RDSCAL*SQRT( DSUM )
                    696:          IF( PR.EQ.ZERO ) THEN
                    697:             PR = ONE
                    698:          ELSE
                    699:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
                    700:          END IF
                    701:       END IF
                    702: *
                    703:       IF( WANTD ) THEN
                    704: *
                    705: *        Compute estimates of Difu and Difl.
                    706: *
                    707:          IF( WANTD1 ) THEN
                    708:             N1 = M
                    709:             N2 = N - M
                    710:             I = N1 + 1
                    711:             IJB = IDIFJB
                    712: *
                    713: *           Frobenius norm-based Difu-estimate.
                    714: *
                    715:             CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    716:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
                    717:      $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
                    718:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    719: *
                    720: *           Frobenius norm-based Difl-estimate.
                    721: *
                    722:             CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
                    723:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
                    724:      $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
                    725:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    726:          ELSE
                    727: *
                    728: *
                    729: *           Compute 1-norm-based estimates of Difu and Difl using
                    730: *           reversed communication with DLACN2. In each step a
                    731: *           generalized Sylvester equation or a transposed variant
                    732: *           is solved.
                    733: *
                    734:             KASE = 0
                    735:             N1 = M
                    736:             N2 = N - M
                    737:             I = N1 + 1
                    738:             IJB = 0
                    739:             MN2 = 2*N1*N2
                    740: *
                    741: *           1-norm-based estimate of Difu.
                    742: *
                    743:    40       CONTINUE
                    744:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
                    745:      $                   KASE, ISAVE )
                    746:             IF( KASE.NE.0 ) THEN
                    747:                IF( KASE.EQ.1 ) THEN
                    748: *
                    749: *                 Solve generalized Sylvester equation.
                    750: *
                    751:                   CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    752:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    753:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    754:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    755:      $                         IERR )
                    756:                ELSE
                    757: *
                    758: *                 Solve the transposed variant.
                    759: *
                    760:                   CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    761:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    762:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    763:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    764:      $                         IERR )
                    765:                END IF
                    766:                GO TO 40
                    767:             END IF
                    768:             DIF( 1 ) = DSCALE / DIF( 1 )
                    769: *
                    770: *           1-norm-based estimate of Difl.
                    771: *
                    772:    50       CONTINUE
                    773:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
                    774:      $                   KASE, ISAVE )
                    775:             IF( KASE.NE.0 ) THEN
                    776:                IF( KASE.EQ.1 ) THEN
                    777: *
                    778: *                 Solve generalized Sylvester equation.
                    779: *
                    780:                   CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    781:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    782:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    783:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    784:      $                         IERR )
                    785:                ELSE
                    786: *
                    787: *                 Solve the transposed variant.
                    788: *
                    789:                   CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    790:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    791:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    792:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    793:      $                         IERR )
                    794:                END IF
                    795:                GO TO 50
                    796:             END IF
                    797:             DIF( 2 ) = DSCALE / DIF( 2 )
                    798: *
                    799:          END IF
                    800:       END IF
                    801: *
                    802:    60 CONTINUE
                    803: *
                    804: *     Compute generalized eigenvalues of reordered pair (A, B) and
                    805: *     normalize the generalized Schur form.
                    806: *
                    807:       PAIR = .FALSE.
                    808:       DO 80 K = 1, N
                    809:          IF( PAIR ) THEN
                    810:             PAIR = .FALSE.
                    811:          ELSE
                    812: *
                    813:             IF( K.LT.N ) THEN
                    814:                IF( A( K+1, K ).NE.ZERO ) THEN
                    815:                   PAIR = .TRUE.
                    816:                END IF
                    817:             END IF
                    818: *
                    819:             IF( PAIR ) THEN
                    820: *
                    821: *             Compute the eigenvalue(s) at position K.
                    822: *
                    823:                WORK( 1 ) = A( K, K )
                    824:                WORK( 2 ) = A( K+1, K )
                    825:                WORK( 3 ) = A( K, K+1 )
                    826:                WORK( 4 ) = A( K+1, K+1 )
                    827:                WORK( 5 ) = B( K, K )
                    828:                WORK( 6 ) = B( K+1, K )
                    829:                WORK( 7 ) = B( K, K+1 )
                    830:                WORK( 8 ) = B( K+1, K+1 )
                    831:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
                    832:      $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
                    833:      $                     ALPHAI( K ) )
                    834:                ALPHAI( K+1 ) = -ALPHAI( K )
                    835: *
                    836:             ELSE
                    837: *
                    838:                IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
                    839: *
                    840: *                 If B(K,K) is negative, make it positive
                    841: *
                    842:                   DO 70 I = 1, N
                    843:                      A( K, I ) = -A( K, I )
                    844:                      B( K, I ) = -B( K, I )
                    845:                      IF( WANTQ ) Q( I, K ) = -Q( I, K )
                    846:    70             CONTINUE
                    847:                END IF
                    848: *
                    849:                ALPHAR( K ) = A( K, K )
                    850:                ALPHAI( K ) = ZERO
                    851:                BETA( K ) = B( K, K )
                    852: *
                    853:             END IF
                    854:          END IF
                    855:    80 CONTINUE
                    856: *
                    857:       WORK( 1 ) = LWMIN
                    858:       IWORK( 1 ) = LIWMIN
                    859: *
                    860:       RETURN
                    861: *
                    862: *     End of DTGSEN
                    863: *
                    864:       END

CVSweb interface <joel.bertrand@systella.fr>