Annotation of rpl/lapack/lapack/dtgsen.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                      2:      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
                      3:      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
                      4: *
                      5: *  -- LAPACK routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     January 2007
                      9: *
                     10: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
                     11: *
                     12: *     .. Scalar Arguments ..
                     13:       LOGICAL            WANTQ, WANTZ
                     14:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                     15:      $                   M, N
                     16:       DOUBLE PRECISION   PL, PR
                     17: *     ..
                     18: *     .. Array Arguments ..
                     19:       LOGICAL            SELECT( * )
                     20:       INTEGER            IWORK( * )
                     21:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     22:      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
                     23:      $                   WORK( * ), Z( LDZ, * )
                     24: *     ..
                     25: *
                     26: *  Purpose
                     27: *  =======
                     28: *
                     29: *  DTGSEN reorders the generalized real Schur decomposition of a real
                     30: *  matrix pair (A, B) (in terms of an orthonormal equivalence trans-
                     31: *  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
                     32: *  appears in the leading diagonal blocks of the upper quasi-triangular
                     33: *  matrix A and the upper triangular B. The leading columns of Q and
                     34: *  Z form orthonormal bases of the corresponding left and right eigen-
                     35: *  spaces (deflating subspaces). (A, B) must be in generalized real
                     36: *  Schur canonical form (as returned by DGGES), i.e. A is block upper
                     37: *  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
                     38: *  triangular.
                     39: *
                     40: *  DTGSEN also computes the generalized eigenvalues
                     41: *
                     42: *              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
                     43: *
                     44: *  of the reordered matrix pair (A, B).
                     45: *
                     46: *  Optionally, DTGSEN computes the estimates of reciprocal condition
                     47: *  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
                     48: *  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
                     49: *  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
                     50: *  the selected cluster and the eigenvalues outside the cluster, resp.,
                     51: *  and norms of "projections" onto left and right eigenspaces w.r.t.
                     52: *  the selected cluster in the (1,1)-block.
                     53: *
                     54: *  Arguments
                     55: *  =========
                     56: *
                     57: *  IJOB    (input) INTEGER
                     58: *          Specifies whether condition numbers are required for the
                     59: *          cluster of eigenvalues (PL and PR) or the deflating subspaces
                     60: *          (Difu and Difl):
                     61: *           =0: Only reorder w.r.t. SELECT. No extras.
                     62: *           =1: Reciprocal of norms of "projections" onto left and right
                     63: *               eigenspaces w.r.t. the selected cluster (PL and PR).
                     64: *           =2: Upper bounds on Difu and Difl. F-norm-based estimate
                     65: *               (DIF(1:2)).
                     66: *           =3: Estimate of Difu and Difl. 1-norm-based estimate
                     67: *               (DIF(1:2)).
                     68: *               About 5 times as expensive as IJOB = 2.
                     69: *           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
                     70: *               version to get it all.
                     71: *           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
                     72: *
                     73: *  WANTQ   (input) LOGICAL
                     74: *          .TRUE. : update the left transformation matrix Q;
                     75: *          .FALSE.: do not update Q.
                     76: *
                     77: *  WANTZ   (input) LOGICAL
                     78: *          .TRUE. : update the right transformation matrix Z;
                     79: *          .FALSE.: do not update Z.
                     80: *
                     81: *  SELECT  (input) LOGICAL array, dimension (N)
                     82: *          SELECT specifies the eigenvalues in the selected cluster.
                     83: *          To select a real eigenvalue w(j), SELECT(j) must be set to
                     84: *          .TRUE.. To select a complex conjugate pair of eigenvalues
                     85: *          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
                     86: *          either SELECT(j) or SELECT(j+1) or both must be set to
                     87: *          .TRUE.; a complex conjugate pair of eigenvalues must be
                     88: *          either both included in the cluster or both excluded.
                     89: *
                     90: *  N       (input) INTEGER
                     91: *          The order of the matrices A and B. N >= 0.
                     92: *
                     93: *  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N)
                     94: *          On entry, the upper quasi-triangular matrix A, with (A, B) in
                     95: *          generalized real Schur canonical form.
                     96: *          On exit, A is overwritten by the reordered matrix A.
                     97: *
                     98: *  LDA     (input) INTEGER
                     99: *          The leading dimension of the array A. LDA >= max(1,N).
                    100: *
                    101: *  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N)
                    102: *          On entry, the upper triangular matrix B, with (A, B) in
                    103: *          generalized real Schur canonical form.
                    104: *          On exit, B is overwritten by the reordered matrix B.
                    105: *
                    106: *  LDB     (input) INTEGER
                    107: *          The leading dimension of the array B. LDB >= max(1,N).
                    108: *
                    109: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
                    110: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
                    111: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
                    112: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                    113: *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
                    114: *          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
                    115: *          form (S,T) that would result if the 2-by-2 diagonal blocks of
                    116: *          the real generalized Schur form of (A,B) were further reduced
                    117: *          to triangular form using complex unitary transformations.
                    118: *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                    119: *          positive, then the j-th and (j+1)-st eigenvalues are a
                    120: *          complex conjugate pair, with ALPHAI(j+1) negative.
                    121: *
                    122: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
                    123: *          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
                    124: *          On exit, Q has been postmultiplied by the left orthogonal
                    125: *          transformation matrix which reorder (A, B); The leading M
                    126: *          columns of Q form orthonormal bases for the specified pair of
                    127: *          left eigenspaces (deflating subspaces).
                    128: *          If WANTQ = .FALSE., Q is not referenced.
                    129: *
                    130: *  LDQ     (input) INTEGER
                    131: *          The leading dimension of the array Q.  LDQ >= 1;
                    132: *          and if WANTQ = .TRUE., LDQ >= N.
                    133: *
                    134: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
                    135: *          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
                    136: *          On exit, Z has been postmultiplied by the left orthogonal
                    137: *          transformation matrix which reorder (A, B); The leading M
                    138: *          columns of Z form orthonormal bases for the specified pair of
                    139: *          left eigenspaces (deflating subspaces).
                    140: *          If WANTZ = .FALSE., Z is not referenced.
                    141: *
                    142: *  LDZ     (input) INTEGER
                    143: *          The leading dimension of the array Z. LDZ >= 1;
                    144: *          If WANTZ = .TRUE., LDZ >= N.
                    145: *
                    146: *  M       (output) INTEGER
                    147: *          The dimension of the specified pair of left and right eigen-
                    148: *          spaces (deflating subspaces). 0 <= M <= N.
                    149: *
                    150: *  PL      (output) DOUBLE PRECISION
                    151: *  PR      (output) DOUBLE PRECISION
                    152: *          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
                    153: *          reciprocal of the norm of "projections" onto left and right
                    154: *          eigenspaces with respect to the selected cluster.
                    155: *          0 < PL, PR <= 1.
                    156: *          If M = 0 or M = N, PL = PR  = 1.
                    157: *          If IJOB = 0, 2 or 3, PL and PR are not referenced.
                    158: *
                    159: *  DIF     (output) DOUBLE PRECISION array, dimension (2).
                    160: *          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
                    161: *          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
                    162: *          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
                    163: *          estimates of Difu and Difl.
                    164: *          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
                    165: *          If IJOB = 0 or 1, DIF is not referenced.
                    166: *
                    167: *  WORK    (workspace/output) DOUBLE PRECISION array,
                    168: *          dimension (MAX(1,LWORK)) 
                    169: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    170: *
                    171: *  LWORK   (input) INTEGER
                    172: *          The dimension of the array WORK. LWORK >=  4*N+16.
                    173: *          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
                    174: *          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
                    175: *
                    176: *          If LWORK = -1, then a workspace query is assumed; the routine
                    177: *          only calculates the optimal size of the WORK array, returns
                    178: *          this value as the first entry of the WORK array, and no error
                    179: *          message related to LWORK is issued by XERBLA.
                    180: *
                    181: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    182: *          IF IJOB = 0, IWORK is not referenced.  Otherwise,
                    183: *          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    184: *
                    185: *  LIWORK  (input) INTEGER
                    186: *          The dimension of the array IWORK. LIWORK >= 1.
                    187: *          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
                    188: *          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
                    189: *
                    190: *          If LIWORK = -1, then a workspace query is assumed; the
                    191: *          routine only calculates the optimal size of the IWORK array,
                    192: *          returns this value as the first entry of the IWORK array, and
                    193: *          no error message related to LIWORK is issued by XERBLA.
                    194: *
                    195: *  INFO    (output) INTEGER
                    196: *            =0: Successful exit.
                    197: *            <0: If INFO = -i, the i-th argument had an illegal value.
                    198: *            =1: Reordering of (A, B) failed because the transformed
                    199: *                matrix pair (A, B) would be too far from generalized
                    200: *                Schur form; the problem is very ill-conditioned.
                    201: *                (A, B) may have been partially reordered.
                    202: *                If requested, 0 is returned in DIF(*), PL and PR.
                    203: *
                    204: *  Further Details
                    205: *  ===============
                    206: *
                    207: *  DTGSEN first collects the selected eigenvalues by computing
                    208: *  orthogonal U and W that move them to the top left corner of (A, B).
                    209: *  In other words, the selected eigenvalues are the eigenvalues of
                    210: *  (A11, B11) in:
                    211: *
                    212: *                U'*(A, B)*W = (A11 A12) (B11 B12) n1
                    213: *                              ( 0  A22),( 0  B22) n2
                    214: *                                n1  n2    n1  n2
                    215: *
                    216: *  where N = n1+n2 and U' means the transpose of U. The first n1 columns
                    217: *  of U and W span the specified pair of left and right eigenspaces
                    218: *  (deflating subspaces) of (A, B).
                    219: *
                    220: *  If (A, B) has been obtained from the generalized real Schur
                    221: *  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
                    222: *  reordered generalized real Schur form of (C, D) is given by
                    223: *
                    224: *           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
                    225: *
                    226: *  and the first n1 columns of Q*U and Z*W span the corresponding
                    227: *  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
                    228: *
                    229: *  Note that if the selected eigenvalue is sufficiently ill-conditioned,
                    230: *  then its value may differ significantly from its value before
                    231: *  reordering.
                    232: *
                    233: *  The reciprocal condition numbers of the left and right eigenspaces
                    234: *  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
                    235: *  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
                    236: *
                    237: *  The Difu and Difl are defined as:
                    238: *
                    239: *       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
                    240: *  and
                    241: *       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
                    242: *
                    243: *  where sigma-min(Zu) is the smallest singular value of the
                    244: *  (2*n1*n2)-by-(2*n1*n2) matrix
                    245: *
                    246: *       Zu = [ kron(In2, A11)  -kron(A22', In1) ]
                    247: *            [ kron(In2, B11)  -kron(B22', In1) ].
                    248: *
                    249: *  Here, Inx is the identity matrix of size nx and A22' is the
                    250: *  transpose of A22. kron(X, Y) is the Kronecker product between
                    251: *  the matrices X and Y.
                    252: *
                    253: *  When DIF(2) is small, small changes in (A, B) can cause large changes
                    254: *  in the deflating subspace. An approximate (asymptotic) bound on the
                    255: *  maximum angular error in the computed deflating subspaces is
                    256: *
                    257: *       EPS * norm((A, B)) / DIF(2),
                    258: *
                    259: *  where EPS is the machine precision.
                    260: *
                    261: *  The reciprocal norm of the projectors on the left and right
                    262: *  eigenspaces associated with (A11, B11) may be returned in PL and PR.
                    263: *  They are computed as follows. First we compute L and R so that
                    264: *  P*(A, B)*Q is block diagonal, where
                    265: *
                    266: *       P = ( I -L ) n1           Q = ( I R ) n1
                    267: *           ( 0  I ) n2    and        ( 0 I ) n2
                    268: *             n1 n2                    n1 n2
                    269: *
                    270: *  and (L, R) is the solution to the generalized Sylvester equation
                    271: *
                    272: *       A11*R - L*A22 = -A12
                    273: *       B11*R - L*B22 = -B12
                    274: *
                    275: *  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
                    276: *  An approximate (asymptotic) bound on the average absolute error of
                    277: *  the selected eigenvalues is
                    278: *
                    279: *       EPS * norm((A, B)) / PL.
                    280: *
                    281: *  There are also global error bounds which valid for perturbations up
                    282: *  to a certain restriction:  A lower bound (x) on the smallest
                    283: *  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
                    284: *  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
                    285: *  (i.e. (A + E, B + F), is
                    286: *
                    287: *   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
                    288: *
                    289: *  An approximate bound on x can be computed from DIF(1:2), PL and PR.
                    290: *
                    291: *  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
                    292: *  (L', R') and unperturbed (L, R) left and right deflating subspaces
                    293: *  associated with the selected cluster in the (1,1)-blocks can be
                    294: *  bounded as
                    295: *
                    296: *   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
                    297: *   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
                    298: *
                    299: *  See LAPACK User's Guide section 4.11 or the following references
                    300: *  for more information.
                    301: *
                    302: *  Note that if the default method for computing the Frobenius-norm-
                    303: *  based estimate DIF is not wanted (see DLATDF), then the parameter
                    304: *  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
                    305: *  (IJOB = 2 will be used)). See DTGSYL for more details.
                    306: *
                    307: *  Based on contributions by
                    308: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    309: *     Umea University, S-901 87 Umea, Sweden.
                    310: *
                    311: *  References
                    312: *  ==========
                    313: *
                    314: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    315: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    316: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    317: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    318: *
                    319: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    320: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    321: *      Estimation: Theory, Algorithms and Software,
                    322: *      Report UMINF - 94.04, Department of Computing Science, Umea
                    323: *      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
                    324: *      Note 87. To appear in Numerical Algorithms, 1996.
                    325: *
                    326: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
                    327: *      for Solving the Generalized Sylvester Equation and Estimating the
                    328: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
                    329: *      Department of Computing Science, Umea University, S-901 87 Umea,
                    330: *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
                    331: *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
                    332: *      1996.
                    333: *
                    334: *  =====================================================================
                    335: *
                    336: *     .. Parameters ..
                    337:       INTEGER            IDIFJB
                    338:       PARAMETER          ( IDIFJB = 3 )
                    339:       DOUBLE PRECISION   ZERO, ONE
                    340:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    341: *     ..
                    342: *     .. Local Scalars ..
                    343:       LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
                    344:      $                   WANTP
                    345:       INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
                    346:      $                   MN2, N1, N2
                    347:       DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
                    348: *     ..
                    349: *     .. Local Arrays ..
                    350:       INTEGER            ISAVE( 3 )
                    351: *     ..
                    352: *     .. External Subroutines ..
                    353:       EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
                    354:      $                   XERBLA
                    355: *     ..
                    356: *     .. External Functions ..
                    357:       DOUBLE PRECISION   DLAMCH
                    358:       EXTERNAL           DLAMCH
                    359: *     ..
                    360: *     .. Intrinsic Functions ..
                    361:       INTRINSIC          MAX, SIGN, SQRT
                    362: *     ..
                    363: *     .. Executable Statements ..
                    364: *
                    365: *     Decode and test the input parameters
                    366: *
                    367:       INFO = 0
                    368:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    369: *
                    370:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
                    371:          INFO = -1
                    372:       ELSE IF( N.LT.0 ) THEN
                    373:          INFO = -5
                    374:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    375:          INFO = -7
                    376:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    377:          INFO = -9
                    378:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    379:          INFO = -14
                    380:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    381:          INFO = -16
                    382:       END IF
                    383: *
                    384:       IF( INFO.NE.0 ) THEN
                    385:          CALL XERBLA( 'DTGSEN', -INFO )
                    386:          RETURN
                    387:       END IF
                    388: *
                    389: *     Get machine constants
                    390: *
                    391:       EPS = DLAMCH( 'P' )
                    392:       SMLNUM = DLAMCH( 'S' ) / EPS
                    393:       IERR = 0
                    394: *
                    395:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
                    396:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
                    397:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
                    398:       WANTD = WANTD1 .OR. WANTD2
                    399: *
                    400: *     Set M to the dimension of the specified pair of deflating
                    401: *     subspaces.
                    402: *
                    403:       M = 0
                    404:       PAIR = .FALSE.
                    405:       DO 10 K = 1, N
                    406:          IF( PAIR ) THEN
                    407:             PAIR = .FALSE.
                    408:          ELSE
                    409:             IF( K.LT.N ) THEN
                    410:                IF( A( K+1, K ).EQ.ZERO ) THEN
                    411:                   IF( SELECT( K ) )
                    412:      $               M = M + 1
                    413:                ELSE
                    414:                   PAIR = .TRUE.
                    415:                   IF( SELECT( K ) .OR. SELECT( K+1 ) )
                    416:      $               M = M + 2
                    417:                END IF
                    418:             ELSE
                    419:                IF( SELECT( N ) )
                    420:      $            M = M + 1
                    421:             END IF
                    422:          END IF
                    423:    10 CONTINUE
                    424: *
                    425:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    426:          LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
                    427:          LIWMIN = MAX( 1, N+6 )
                    428:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
                    429:          LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
                    430:          LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
                    431:       ELSE
                    432:          LWMIN = MAX( 1, 4*N+16 )
                    433:          LIWMIN = 1
                    434:       END IF
                    435: *
                    436:       WORK( 1 ) = LWMIN
                    437:       IWORK( 1 ) = LIWMIN
                    438: *
                    439:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    440:          INFO = -22
                    441:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    442:          INFO = -24
                    443:       END IF
                    444: *
                    445:       IF( INFO.NE.0 ) THEN
                    446:          CALL XERBLA( 'DTGSEN', -INFO )
                    447:          RETURN
                    448:       ELSE IF( LQUERY ) THEN
                    449:          RETURN
                    450:       END IF
                    451: *
                    452: *     Quick return if possible.
                    453: *
                    454:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    455:          IF( WANTP ) THEN
                    456:             PL = ONE
                    457:             PR = ONE
                    458:          END IF
                    459:          IF( WANTD ) THEN
                    460:             DSCALE = ZERO
                    461:             DSUM = ONE
                    462:             DO 20 I = 1, N
                    463:                CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
                    464:                CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
                    465:    20       CONTINUE
                    466:             DIF( 1 ) = DSCALE*SQRT( DSUM )
                    467:             DIF( 2 ) = DIF( 1 )
                    468:          END IF
                    469:          GO TO 60
                    470:       END IF
                    471: *
                    472: *     Collect the selected blocks at the top-left corner of (A, B).
                    473: *
                    474:       KS = 0
                    475:       PAIR = .FALSE.
                    476:       DO 30 K = 1, N
                    477:          IF( PAIR ) THEN
                    478:             PAIR = .FALSE.
                    479:          ELSE
                    480: *
                    481:             SWAP = SELECT( K )
                    482:             IF( K.LT.N ) THEN
                    483:                IF( A( K+1, K ).NE.ZERO ) THEN
                    484:                   PAIR = .TRUE.
                    485:                   SWAP = SWAP .OR. SELECT( K+1 )
                    486:                END IF
                    487:             END IF
                    488: *
                    489:             IF( SWAP ) THEN
                    490:                KS = KS + 1
                    491: *
                    492: *              Swap the K-th block to position KS.
                    493: *              Perform the reordering of diagonal blocks in (A, B)
                    494: *              by orthogonal transformation matrices and update
                    495: *              Q and Z accordingly (if requested):
                    496: *
                    497:                KK = K
                    498:                IF( K.NE.KS )
                    499:      $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
                    500:      $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
                    501: *
                    502:                IF( IERR.GT.0 ) THEN
                    503: *
                    504: *                 Swap is rejected: exit.
                    505: *
                    506:                   INFO = 1
                    507:                   IF( WANTP ) THEN
                    508:                      PL = ZERO
                    509:                      PR = ZERO
                    510:                   END IF
                    511:                   IF( WANTD ) THEN
                    512:                      DIF( 1 ) = ZERO
                    513:                      DIF( 2 ) = ZERO
                    514:                   END IF
                    515:                   GO TO 60
                    516:                END IF
                    517: *
                    518:                IF( PAIR )
                    519:      $            KS = KS + 1
                    520:             END IF
                    521:          END IF
                    522:    30 CONTINUE
                    523:       IF( WANTP ) THEN
                    524: *
                    525: *        Solve generalized Sylvester equation for R and L
                    526: *        and compute PL and PR.
                    527: *
                    528:          N1 = M
                    529:          N2 = N - M
                    530:          I = N1 + 1
                    531:          IJB = 0
                    532:          CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
                    533:          CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
                    534:      $                N1 )
                    535:          CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    536:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
                    537:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    538:      $                LWORK-2*N1*N2, IWORK, IERR )
                    539: *
                    540: *        Estimate the reciprocal of norms of "projections" onto left
                    541: *        and right eigenspaces.
                    542: *
                    543:          RDSCAL = ZERO
                    544:          DSUM = ONE
                    545:          CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
                    546:          PL = RDSCAL*SQRT( DSUM )
                    547:          IF( PL.EQ.ZERO ) THEN
                    548:             PL = ONE
                    549:          ELSE
                    550:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
                    551:          END IF
                    552:          RDSCAL = ZERO
                    553:          DSUM = ONE
                    554:          CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
                    555:          PR = RDSCAL*SQRT( DSUM )
                    556:          IF( PR.EQ.ZERO ) THEN
                    557:             PR = ONE
                    558:          ELSE
                    559:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
                    560:          END IF
                    561:       END IF
                    562: *
                    563:       IF( WANTD ) THEN
                    564: *
                    565: *        Compute estimates of Difu and Difl.
                    566: *
                    567:          IF( WANTD1 ) THEN
                    568:             N1 = M
                    569:             N2 = N - M
                    570:             I = N1 + 1
                    571:             IJB = IDIFJB
                    572: *
                    573: *           Frobenius norm-based Difu-estimate.
                    574: *
                    575:             CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    576:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
                    577:      $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
                    578:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    579: *
                    580: *           Frobenius norm-based Difl-estimate.
                    581: *
                    582:             CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
                    583:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
                    584:      $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
                    585:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    586:          ELSE
                    587: *
                    588: *
                    589: *           Compute 1-norm-based estimates of Difu and Difl using
                    590: *           reversed communication with DLACN2. In each step a
                    591: *           generalized Sylvester equation or a transposed variant
                    592: *           is solved.
                    593: *
                    594:             KASE = 0
                    595:             N1 = M
                    596:             N2 = N - M
                    597:             I = N1 + 1
                    598:             IJB = 0
                    599:             MN2 = 2*N1*N2
                    600: *
                    601: *           1-norm-based estimate of Difu.
                    602: *
                    603:    40       CONTINUE
                    604:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
                    605:      $                   KASE, ISAVE )
                    606:             IF( KASE.NE.0 ) THEN
                    607:                IF( KASE.EQ.1 ) THEN
                    608: *
                    609: *                 Solve generalized Sylvester equation.
                    610: *
                    611:                   CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    612:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    613:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    614:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    615:      $                         IERR )
                    616:                ELSE
                    617: *
                    618: *                 Solve the transposed variant.
                    619: *
                    620:                   CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    621:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    622:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    623:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    624:      $                         IERR )
                    625:                END IF
                    626:                GO TO 40
                    627:             END IF
                    628:             DIF( 1 ) = DSCALE / DIF( 1 )
                    629: *
                    630: *           1-norm-based estimate of Difl.
                    631: *
                    632:    50       CONTINUE
                    633:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
                    634:      $                   KASE, ISAVE )
                    635:             IF( KASE.NE.0 ) THEN
                    636:                IF( KASE.EQ.1 ) THEN
                    637: *
                    638: *                 Solve generalized Sylvester equation.
                    639: *
                    640:                   CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    641:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    642:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    643:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    644:      $                         IERR )
                    645:                ELSE
                    646: *
                    647: *                 Solve the transposed variant.
                    648: *
                    649:                   CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    650:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    651:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    652:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
                    653:      $                         IERR )
                    654:                END IF
                    655:                GO TO 50
                    656:             END IF
                    657:             DIF( 2 ) = DSCALE / DIF( 2 )
                    658: *
                    659:          END IF
                    660:       END IF
                    661: *
                    662:    60 CONTINUE
                    663: *
                    664: *     Compute generalized eigenvalues of reordered pair (A, B) and
                    665: *     normalize the generalized Schur form.
                    666: *
                    667:       PAIR = .FALSE.
                    668:       DO 80 K = 1, N
                    669:          IF( PAIR ) THEN
                    670:             PAIR = .FALSE.
                    671:          ELSE
                    672: *
                    673:             IF( K.LT.N ) THEN
                    674:                IF( A( K+1, K ).NE.ZERO ) THEN
                    675:                   PAIR = .TRUE.
                    676:                END IF
                    677:             END IF
                    678: *
                    679:             IF( PAIR ) THEN
                    680: *
                    681: *             Compute the eigenvalue(s) at position K.
                    682: *
                    683:                WORK( 1 ) = A( K, K )
                    684:                WORK( 2 ) = A( K+1, K )
                    685:                WORK( 3 ) = A( K, K+1 )
                    686:                WORK( 4 ) = A( K+1, K+1 )
                    687:                WORK( 5 ) = B( K, K )
                    688:                WORK( 6 ) = B( K+1, K )
                    689:                WORK( 7 ) = B( K, K+1 )
                    690:                WORK( 8 ) = B( K+1, K+1 )
                    691:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
                    692:      $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
                    693:      $                     ALPHAI( K ) )
                    694:                ALPHAI( K+1 ) = -ALPHAI( K )
                    695: *
                    696:             ELSE
                    697: *
                    698:                IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
                    699: *
                    700: *                 If B(K,K) is negative, make it positive
                    701: *
                    702:                   DO 70 I = 1, N
                    703:                      A( K, I ) = -A( K, I )
                    704:                      B( K, I ) = -B( K, I )
                    705:                      IF( WANTQ ) Q( I, K ) = -Q( I, K )
                    706:    70             CONTINUE
                    707:                END IF
                    708: *
                    709:                ALPHAR( K ) = A( K, K )
                    710:                ALPHAI( K ) = ZERO
                    711:                BETA( K ) = B( K, K )
                    712: *
                    713:             END IF
                    714:          END IF
                    715:    80 CONTINUE
                    716: *
                    717:       WORK( 1 ) = LWMIN
                    718:       IWORK( 1 ) = LIWMIN
                    719: *
                    720:       RETURN
                    721: *
                    722: *     End of DTGSEN
                    723: *
                    724:       END

CVSweb interface <joel.bertrand@systella.fr>