Diff for /rpl/lapack/lapack/dtgsen.f between versions 1.9 and 1.10

version 1.9, 2011/07/22 07:38:12 version 1.10, 2011/11/21 20:43:06
Line 1 Line 1
   *> \brief \b DTGSEN
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at 
   *            http://www.netlib.org/lapack/explore-html/ 
   *
   *> \htmlonly
   *> Download DTGSEN + dependencies 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsen.f"> 
   *> [TGZ]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsen.f"> 
   *> [ZIP]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsen.f"> 
   *> [TXT]</a>
   *> \endhtmlonly 
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
   *                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
   *                          PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
   * 
   *       .. Scalar Arguments ..
   *       LOGICAL            WANTQ, WANTZ
   *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
   *      $                   M, N
   *       DOUBLE PRECISION   PL, PR
   *       ..
   *       .. Array Arguments ..
   *       LOGICAL            SELECT( * )
   *       INTEGER            IWORK( * )
   *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   *      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
   *      $                   WORK( * ), Z( LDZ, * )
   *       ..
   *  
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> DTGSEN reorders the generalized real Schur decomposition of a real
   *> matrix pair (A, B) (in terms of an orthonormal equivalence trans-
   *> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
   *> appears in the leading diagonal blocks of the upper quasi-triangular
   *> matrix A and the upper triangular B. The leading columns of Q and
   *> Z form orthonormal bases of the corresponding left and right eigen-
   *> spaces (deflating subspaces). (A, B) must be in generalized real
   *> Schur canonical form (as returned by DGGES), i.e. A is block upper
   *> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
   *> triangular.
   *>
   *> DTGSEN also computes the generalized eigenvalues
   *>
   *>             w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
   *>
   *> of the reordered matrix pair (A, B).
   *>
   *> Optionally, DTGSEN computes the estimates of reciprocal condition
   *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
   *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
   *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
   *> the selected cluster and the eigenvalues outside the cluster, resp.,
   *> and norms of "projections" onto left and right eigenspaces w.r.t.
   *> the selected cluster in the (1,1)-block.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] IJOB
   *> \verbatim
   *>          IJOB is INTEGER
   *>          Specifies whether condition numbers are required for the
   *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
   *>          (Difu and Difl):
   *>           =0: Only reorder w.r.t. SELECT. No extras.
   *>           =1: Reciprocal of norms of "projections" onto left and right
   *>               eigenspaces w.r.t. the selected cluster (PL and PR).
   *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
   *>               (DIF(1:2)).
   *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
   *>               (DIF(1:2)).
   *>               About 5 times as expensive as IJOB = 2.
   *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
   *>               version to get it all.
   *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
   *> \endverbatim
   *>
   *> \param[in] WANTQ
   *> \verbatim
   *>          WANTQ is LOGICAL
   *>          .TRUE. : update the left transformation matrix Q;
   *>          .FALSE.: do not update Q.
   *> \endverbatim
   *>
   *> \param[in] WANTZ
   *> \verbatim
   *>          WANTZ is LOGICAL
   *>          .TRUE. : update the right transformation matrix Z;
   *>          .FALSE.: do not update Z.
   *> \endverbatim
   *>
   *> \param[in] SELECT
   *> \verbatim
   *>          SELECT is LOGICAL array, dimension (N)
   *>          SELECT specifies the eigenvalues in the selected cluster.
   *>          To select a real eigenvalue w(j), SELECT(j) must be set to
   *>          .TRUE.. To select a complex conjugate pair of eigenvalues
   *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
   *>          either SELECT(j) or SELECT(j+1) or both must be set to
   *>          .TRUE.; a complex conjugate pair of eigenvalues must be
   *>          either both included in the cluster or both excluded.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The order of the matrices A and B. N >= 0.
   *> \endverbatim
   *>
   *> \param[in,out] A
   *> \verbatim
   *>          A is DOUBLE PRECISION array, dimension(LDA,N)
   *>          On entry, the upper quasi-triangular matrix A, with (A, B) in
   *>          generalized real Schur canonical form.
   *>          On exit, A is overwritten by the reordered matrix A.
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>          The leading dimension of the array A. LDA >= max(1,N).
   *> \endverbatim
   *>
   *> \param[in,out] B
   *> \verbatim
   *>          B is DOUBLE PRECISION array, dimension(LDB,N)
   *>          On entry, the upper triangular matrix B, with (A, B) in
   *>          generalized real Schur canonical form.
   *>          On exit, B is overwritten by the reordered matrix B.
   *> \endverbatim
   *>
   *> \param[in] LDB
   *> \verbatim
   *>          LDB is INTEGER
   *>          The leading dimension of the array B. LDB >= max(1,N).
   *> \endverbatim
   *>
   *> \param[out] ALPHAR
   *> \verbatim
   *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
   *> \endverbatim
   *>
   *> \param[out] ALPHAI
   *> \verbatim
   *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
   *> \endverbatim
   *>
   *> \param[out] BETA
   *> \verbatim
   *>          BETA is DOUBLE PRECISION array, dimension (N)
   *>
   *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
   *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
   *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
   *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
   *>          the real generalized Schur form of (A,B) were further reduced
   *>          to triangular form using complex unitary transformations.
   *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
   *>          positive, then the j-th and (j+1)-st eigenvalues are a
   *>          complex conjugate pair, with ALPHAI(j+1) negative.
   *> \endverbatim
   *>
   *> \param[in,out] Q
   *> \verbatim
   *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
   *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
   *>          On exit, Q has been postmultiplied by the left orthogonal
   *>          transformation matrix which reorder (A, B); The leading M
   *>          columns of Q form orthonormal bases for the specified pair of
   *>          left eigenspaces (deflating subspaces).
   *>          If WANTQ = .FALSE., Q is not referenced.
   *> \endverbatim
   *>
   *> \param[in] LDQ
   *> \verbatim
   *>          LDQ is INTEGER
   *>          The leading dimension of the array Q.  LDQ >= 1;
   *>          and if WANTQ = .TRUE., LDQ >= N.
   *> \endverbatim
   *>
   *> \param[in,out] Z
   *> \verbatim
   *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
   *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
   *>          On exit, Z has been postmultiplied by the left orthogonal
   *>          transformation matrix which reorder (A, B); The leading M
   *>          columns of Z form orthonormal bases for the specified pair of
   *>          left eigenspaces (deflating subspaces).
   *>          If WANTZ = .FALSE., Z is not referenced.
   *> \endverbatim
   *>
   *> \param[in] LDZ
   *> \verbatim
   *>          LDZ is INTEGER
   *>          The leading dimension of the array Z. LDZ >= 1;
   *>          If WANTZ = .TRUE., LDZ >= N.
   *> \endverbatim
   *>
   *> \param[out] M
   *> \verbatim
   *>          M is INTEGER
   *>          The dimension of the specified pair of left and right eigen-
   *>          spaces (deflating subspaces). 0 <= M <= N.
   *> \endverbatim
   *>
   *> \param[out] PL
   *> \verbatim
   *>          PL is DOUBLE PRECISION
   *> \endverbatim
   
   *> \param[out] PR
   *> \verbatim
   *>          PR is DOUBLE PRECISION
   *>
   *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
   *>          reciprocal of the norm of "projections" onto left and right
   *>          eigenspaces with respect to the selected cluster.
   *>          0 < PL, PR <= 1.
   *>          If M = 0 or M = N, PL = PR  = 1.
   *>          If IJOB = 0, 2 or 3, PL and PR are not referenced.
   *> \endverbatim
   *>
   *> \param[out] DIF
   *> \verbatim
   *>          DIF is DOUBLE PRECISION array, dimension (2).
   *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
   *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
   *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
   *>          estimates of Difu and Difl.
   *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
   *>          If IJOB = 0 or 1, DIF is not referenced.
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is DOUBLE PRECISION array,
   *>          dimension (MAX(1,LWORK)) 
   *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   *> \endverbatim
   *>
   *> \param[in] LWORK
   *> \verbatim
   *>          LWORK is INTEGER
   *>          The dimension of the array WORK. LWORK >=  4*N+16.
   *>          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
   *>          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
   *>
   *>          If LWORK = -1, then a workspace query is assumed; the routine
   *>          only calculates the optimal size of the WORK array, returns
   *>          this value as the first entry of the WORK array, and no error
   *>          message related to LWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] IWORK
   *> \verbatim
   *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
   *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
   *> \endverbatim
   *>
   *> \param[in] LIWORK
   *> \verbatim
   *>          LIWORK is INTEGER
   *>          The dimension of the array IWORK. LIWORK >= 1.
   *>          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
   *>          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
   *>
   *>          If LIWORK = -1, then a workspace query is assumed; the
   *>          routine only calculates the optimal size of the IWORK array,
   *>          returns this value as the first entry of the IWORK array, and
   *>          no error message related to LIWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>            =0: Successful exit.
   *>            <0: If INFO = -i, the i-th argument had an illegal value.
   *>            =1: Reordering of (A, B) failed because the transformed
   *>                matrix pair (A, B) would be too far from generalized
   *>                Schur form; the problem is very ill-conditioned.
   *>                (A, B) may have been partially reordered.
   *>                If requested, 0 is returned in DIF(*), PL and PR.
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee 
   *> \author Univ. of California Berkeley 
   *> \author Univ. of Colorado Denver 
   *> \author NAG Ltd. 
   *
   *> \date November 2011
   *
   *> \ingroup doubleOTHERcomputational
   *
   *> \par Further Details:
   *  =====================
   *>
   *> \verbatim
   *>
   *>  DTGSEN first collects the selected eigenvalues by computing
   *>  orthogonal U and W that move them to the top left corner of (A, B).
   *>  In other words, the selected eigenvalues are the eigenvalues of
   *>  (A11, B11) in:
   *>
   *>              U**T*(A, B)*W = (A11 A12) (B11 B12) n1
   *>                              ( 0  A22),( 0  B22) n2
   *>                                n1  n2    n1  n2
   *>
   *>  where N = n1+n2 and U**T means the transpose of U. The first n1 columns
   *>  of U and W span the specified pair of left and right eigenspaces
   *>  (deflating subspaces) of (A, B).
   *>
   *>  If (A, B) has been obtained from the generalized real Schur
   *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
   *>  reordered generalized real Schur form of (C, D) is given by
   *>
   *>           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
   *>
   *>  and the first n1 columns of Q*U and Z*W span the corresponding
   *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
   *>
   *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
   *>  then its value may differ significantly from its value before
   *>  reordering.
   *>
   *>  The reciprocal condition numbers of the left and right eigenspaces
   *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
   *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
   *>
   *>  The Difu and Difl are defined as:
   *>
   *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
   *>  and
   *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
   *>
   *>  where sigma-min(Zu) is the smallest singular value of the
   *>  (2*n1*n2)-by-(2*n1*n2) matrix
   *>
   *>       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]
   *>            [ kron(In2, B11)  -kron(B22**T, In1) ].
   *>
   *>  Here, Inx is the identity matrix of size nx and A22**T is the
   *>  transpose of A22. kron(X, Y) is the Kronecker product between
   *>  the matrices X and Y.
   *>
   *>  When DIF(2) is small, small changes in (A, B) can cause large changes
   *>  in the deflating subspace. An approximate (asymptotic) bound on the
   *>  maximum angular error in the computed deflating subspaces is
   *>
   *>       EPS * norm((A, B)) / DIF(2),
   *>
   *>  where EPS is the machine precision.
   *>
   *>  The reciprocal norm of the projectors on the left and right
   *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
   *>  They are computed as follows. First we compute L and R so that
   *>  P*(A, B)*Q is block diagonal, where
   *>
   *>       P = ( I -L ) n1           Q = ( I R ) n1
   *>           ( 0  I ) n2    and        ( 0 I ) n2
   *>             n1 n2                    n1 n2
   *>
   *>  and (L, R) is the solution to the generalized Sylvester equation
   *>
   *>       A11*R - L*A22 = -A12
   *>       B11*R - L*B22 = -B12
   *>
   *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
   *>  An approximate (asymptotic) bound on the average absolute error of
   *>  the selected eigenvalues is
   *>
   *>       EPS * norm((A, B)) / PL.
   *>
   *>  There are also global error bounds which valid for perturbations up
   *>  to a certain restriction:  A lower bound (x) on the smallest
   *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
   *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
   *>  (i.e. (A + E, B + F), is
   *>
   *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
   *>
   *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
   *>
   *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
   *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
   *>  associated with the selected cluster in the (1,1)-blocks can be
   *>  bounded as
   *>
   *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
   *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
   *>
   *>  See LAPACK User's Guide section 4.11 or the following references
   *>  for more information.
   *>
   *>  Note that if the default method for computing the Frobenius-norm-
   *>  based estimate DIF is not wanted (see DLATDF), then the parameter
   *>  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
   *>  (IJOB = 2 will be used)). See DTGSYL for more details.
   *> \endverbatim
   *
   *> \par Contributors:
   *  ==================
   *>
   *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
   *>     Umea University, S-901 87 Umea, Sweden.
   *
   *> \par References:
   *  ================
   *>
   *> \verbatim
   *>
   *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
   *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
   *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
   *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
   *>
   *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
   *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
   *>      Estimation: Theory, Algorithms and Software,
   *>      Report UMINF - 94.04, Department of Computing Science, Umea
   *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
   *>      Note 87. To appear in Numerical Algorithms, 1996.
   *>
   *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
   *>      for Solving the Generalized Sylvester Equation and Estimating the
   *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
   *>      Department of Computing Science, Umea University, S-901 87 Umea,
   *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
   *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
   *>      1996.
   *> \endverbatim
   *>
   *  =====================================================================
       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,        SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,       $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )       $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
 *  *
 *  -- LAPACK routine (version 3.3.1) --  *  -- LAPACK computational routine (version 3.4.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *  -- April 2011                                                      --  *     November 2011
 *  
 *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.  
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       LOGICAL            WANTQ, WANTZ        LOGICAL            WANTQ, WANTZ
Line 23 Line 471
      $                   WORK( * ), Z( LDZ, * )       $                   WORK( * ), Z( LDZ, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  DTGSEN reorders the generalized real Schur decomposition of a real  
 *  matrix pair (A, B) (in terms of an orthonormal equivalence trans-  
 *  formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues  
 *  appears in the leading diagonal blocks of the upper quasi-triangular  
 *  matrix A and the upper triangular B. The leading columns of Q and  
 *  Z form orthonormal bases of the corresponding left and right eigen-  
 *  spaces (deflating subspaces). (A, B) must be in generalized real  
 *  Schur canonical form (as returned by DGGES), i.e. A is block upper  
 *  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper  
 *  triangular.  
 *  
 *  DTGSEN also computes the generalized eigenvalues  
 *  
 *              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)  
 *  
 *  of the reordered matrix pair (A, B).  
 *  
 *  Optionally, DTGSEN computes the estimates of reciprocal condition  
 *  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),  
 *  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)  
 *  between the matrix pairs (A11, B11) and (A22,B22) that correspond to  
 *  the selected cluster and the eigenvalues outside the cluster, resp.,  
 *  and norms of "projections" onto left and right eigenspaces w.r.t.  
 *  the selected cluster in the (1,1)-block.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  IJOB    (input) INTEGER  
 *          Specifies whether condition numbers are required for the  
 *          cluster of eigenvalues (PL and PR) or the deflating subspaces  
 *          (Difu and Difl):  
 *           =0: Only reorder w.r.t. SELECT. No extras.  
 *           =1: Reciprocal of norms of "projections" onto left and right  
 *               eigenspaces w.r.t. the selected cluster (PL and PR).  
 *           =2: Upper bounds on Difu and Difl. F-norm-based estimate  
 *               (DIF(1:2)).  
 *           =3: Estimate of Difu and Difl. 1-norm-based estimate  
 *               (DIF(1:2)).  
 *               About 5 times as expensive as IJOB = 2.  
 *           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic  
 *               version to get it all.  
 *           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)  
 *  
 *  WANTQ   (input) LOGICAL  
 *          .TRUE. : update the left transformation matrix Q;  
 *          .FALSE.: do not update Q.  
 *  
 *  WANTZ   (input) LOGICAL  
 *          .TRUE. : update the right transformation matrix Z;  
 *          .FALSE.: do not update Z.  
 *  
 *  SELECT  (input) LOGICAL array, dimension (N)  
 *          SELECT specifies the eigenvalues in the selected cluster.  
 *          To select a real eigenvalue w(j), SELECT(j) must be set to  
 *          .TRUE.. To select a complex conjugate pair of eigenvalues  
 *          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,  
 *          either SELECT(j) or SELECT(j+1) or both must be set to  
 *          .TRUE.; a complex conjugate pair of eigenvalues must be  
 *          either both included in the cluster or both excluded.  
 *  
 *  N       (input) INTEGER  
 *          The order of the matrices A and B. N >= 0.  
 *  
 *  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N)  
 *          On entry, the upper quasi-triangular matrix A, with (A, B) in  
 *          generalized real Schur canonical form.  
 *          On exit, A is overwritten by the reordered matrix A.  
 *  
 *  LDA     (input) INTEGER  
 *          The leading dimension of the array A. LDA >= max(1,N).  
 *  
 *  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N)  
 *          On entry, the upper triangular matrix B, with (A, B) in  
 *          generalized real Schur canonical form.  
 *          On exit, B is overwritten by the reordered matrix B.  
 *  
 *  LDB     (input) INTEGER  
 *          The leading dimension of the array B. LDB >= max(1,N).  
 *  
 *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)  
 *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)  
 *  BETA    (output) DOUBLE PRECISION array, dimension (N)  
 *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will  
 *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i  
 *          and BETA(j),j=1,...,N  are the diagonals of the complex Schur  
 *          form (S,T) that would result if the 2-by-2 diagonal blocks of  
 *          the real generalized Schur form of (A,B) were further reduced  
 *          to triangular form using complex unitary transformations.  
 *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if  
 *          positive, then the j-th and (j+1)-st eigenvalues are a  
 *          complex conjugate pair, with ALPHAI(j+1) negative.  
 *  
 *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)  
 *          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.  
 *          On exit, Q has been postmultiplied by the left orthogonal  
 *          transformation matrix which reorder (A, B); The leading M  
 *          columns of Q form orthonormal bases for the specified pair of  
 *          left eigenspaces (deflating subspaces).  
 *          If WANTQ = .FALSE., Q is not referenced.  
 *  
 *  LDQ     (input) INTEGER  
 *          The leading dimension of the array Q.  LDQ >= 1;  
 *          and if WANTQ = .TRUE., LDQ >= N.  
 *  
 *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)  
 *          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.  
 *          On exit, Z has been postmultiplied by the left orthogonal  
 *          transformation matrix which reorder (A, B); The leading M  
 *          columns of Z form orthonormal bases for the specified pair of  
 *          left eigenspaces (deflating subspaces).  
 *          If WANTZ = .FALSE., Z is not referenced.  
 *  
 *  LDZ     (input) INTEGER  
 *          The leading dimension of the array Z. LDZ >= 1;  
 *          If WANTZ = .TRUE., LDZ >= N.  
 *  
 *  M       (output) INTEGER  
 *          The dimension of the specified pair of left and right eigen-  
 *          spaces (deflating subspaces). 0 <= M <= N.  
 *  
 *  PL      (output) DOUBLE PRECISION  
 *  PR      (output) DOUBLE PRECISION  
 *          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the  
 *          reciprocal of the norm of "projections" onto left and right  
 *          eigenspaces with respect to the selected cluster.  
 *          0 < PL, PR <= 1.  
 *          If M = 0 or M = N, PL = PR  = 1.  
 *          If IJOB = 0, 2 or 3, PL and PR are not referenced.  
 *  
 *  DIF     (output) DOUBLE PRECISION array, dimension (2).  
 *          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.  
 *          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on  
 *          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based  
 *          estimates of Difu and Difl.  
 *          If M = 0 or N, DIF(1:2) = F-norm([A, B]).  
 *          If IJOB = 0 or 1, DIF is not referenced.  
 *  
 *  WORK    (workspace/output) DOUBLE PRECISION array,  
 *          dimension (MAX(1,LWORK))   
 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.  
 *  
 *  LWORK   (input) INTEGER  
 *          The dimension of the array WORK. LWORK >=  4*N+16.  
 *          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).  
 *          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).  
 *  
 *          If LWORK = -1, then a workspace query is assumed; the routine  
 *          only calculates the optimal size of the WORK array, returns  
 *          this value as the first entry of the WORK array, and no error  
 *          message related to LWORK is issued by XERBLA.  
 *  
 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))  
 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.  
 *  
 *  LIWORK  (input) INTEGER  
 *          The dimension of the array IWORK. LIWORK >= 1.  
 *          If IJOB = 1, 2 or 4, LIWORK >=  N+6.  
 *          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).  
 *  
 *          If LIWORK = -1, then a workspace query is assumed; the  
 *          routine only calculates the optimal size of the IWORK array,  
 *          returns this value as the first entry of the IWORK array, and  
 *          no error message related to LIWORK is issued by XERBLA.  
 *  
 *  INFO    (output) INTEGER  
 *            =0: Successful exit.  
 *            <0: If INFO = -i, the i-th argument had an illegal value.  
 *            =1: Reordering of (A, B) failed because the transformed  
 *                matrix pair (A, B) would be too far from generalized  
 *                Schur form; the problem is very ill-conditioned.  
 *                (A, B) may have been partially reordered.  
 *                If requested, 0 is returned in DIF(*), PL and PR.  
 *  
 *  Further Details  
 *  ===============  
 *  
 *  DTGSEN first collects the selected eigenvalues by computing  
 *  orthogonal U and W that move them to the top left corner of (A, B).  
 *  In other words, the selected eigenvalues are the eigenvalues of  
 *  (A11, B11) in:  
 *  
 *              U**T*(A, B)*W = (A11 A12) (B11 B12) n1  
 *                              ( 0  A22),( 0  B22) n2  
 *                                n1  n2    n1  n2  
 *  
 *  where N = n1+n2 and U**T means the transpose of U. The first n1 columns  
 *  of U and W span the specified pair of left and right eigenspaces  
 *  (deflating subspaces) of (A, B).  
 *  
 *  If (A, B) has been obtained from the generalized real Schur  
 *  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the  
 *  reordered generalized real Schur form of (C, D) is given by  
 *  
 *           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,  
 *  
 *  and the first n1 columns of Q*U and Z*W span the corresponding  
 *  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).  
 *  
 *  Note that if the selected eigenvalue is sufficiently ill-conditioned,  
 *  then its value may differ significantly from its value before  
 *  reordering.  
 *  
 *  The reciprocal condition numbers of the left and right eigenspaces  
 *  spanned by the first n1 columns of U and W (or Q*U and Z*W) may  
 *  be returned in DIF(1:2), corresponding to Difu and Difl, resp.  
 *  
 *  The Difu and Difl are defined as:  
 *  
 *       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )  
 *  and  
 *       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],  
 *  
 *  where sigma-min(Zu) is the smallest singular value of the  
 *  (2*n1*n2)-by-(2*n1*n2) matrix  
 *  
 *       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]  
 *            [ kron(In2, B11)  -kron(B22**T, In1) ].  
 *  
 *  Here, Inx is the identity matrix of size nx and A22**T is the  
 *  transpose of A22. kron(X, Y) is the Kronecker product between  
 *  the matrices X and Y.  
 *  
 *  When DIF(2) is small, small changes in (A, B) can cause large changes  
 *  in the deflating subspace. An approximate (asymptotic) bound on the  
 *  maximum angular error in the computed deflating subspaces is  
 *  
 *       EPS * norm((A, B)) / DIF(2),  
 *  
 *  where EPS is the machine precision.  
 *  
 *  The reciprocal norm of the projectors on the left and right  
 *  eigenspaces associated with (A11, B11) may be returned in PL and PR.  
 *  They are computed as follows. First we compute L and R so that  
 *  P*(A, B)*Q is block diagonal, where  
 *  
 *       P = ( I -L ) n1           Q = ( I R ) n1  
 *           ( 0  I ) n2    and        ( 0 I ) n2  
 *             n1 n2                    n1 n2  
 *  
 *  and (L, R) is the solution to the generalized Sylvester equation  
 *  
 *       A11*R - L*A22 = -A12  
 *       B11*R - L*B22 = -B12  
 *  
 *  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).  
 *  An approximate (asymptotic) bound on the average absolute error of  
 *  the selected eigenvalues is  
 *  
 *       EPS * norm((A, B)) / PL.  
 *  
 *  There are also global error bounds which valid for perturbations up  
 *  to a certain restriction:  A lower bound (x) on the smallest  
 *  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and  
 *  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),  
 *  (i.e. (A + E, B + F), is  
 *  
 *   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).  
 *  
 *  An approximate bound on x can be computed from DIF(1:2), PL and PR.  
 *  
 *  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed  
 *  (L', R') and unperturbed (L, R) left and right deflating subspaces  
 *  associated with the selected cluster in the (1,1)-blocks can be  
 *  bounded as  
 *  
 *   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))  
 *   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))  
 *  
 *  See LAPACK User's Guide section 4.11 or the following references  
 *  for more information.  
 *  
 *  Note that if the default method for computing the Frobenius-norm-  
 *  based estimate DIF is not wanted (see DLATDF), then the parameter  
 *  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF  
 *  (IJOB = 2 will be used)). See DTGSYL for more details.  
 *  
 *  Based on contributions by  
 *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,  
 *     Umea University, S-901 87 Umea, Sweden.  
 *  
 *  References  
 *  ==========  
 *  
 *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the  
 *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in  
 *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and  
 *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.  
 *  
 *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified  
 *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition  
 *      Estimation: Theory, Algorithms and Software,  
 *      Report UMINF - 94.04, Department of Computing Science, Umea  
 *      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working  
 *      Note 87. To appear in Numerical Algorithms, 1996.  
 *  
 *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software  
 *      for Solving the Generalized Sylvester Equation and Estimating the  
 *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,  
 *      Department of Computing Science, Umea University, S-901 87 Umea,  
 *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working  
 *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,  
 *      1996.  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Parameters ..  *     .. Parameters ..

Removed from v.1.9  
changed lines
  Added in v.1.10


CVSweb interface <joel.bertrand@systella.fr>