File:  [local] / rpl / lapack / lapack / dtgex2.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:49 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
    2:      $                   LDZ, J1, N1, N2, WORK, LWORK, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       LOGICAL            WANTQ, WANTZ
   11:       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   15:      $                   WORK( * ), Z( LDZ, * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
   22: *  of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
   23: *  (A, B) by an orthogonal equivalence transformation.
   24: *
   25: *  (A, B) must be in generalized real Schur canonical form (as returned
   26: *  by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
   27: *  diagonal blocks. B is upper triangular.
   28: *
   29: *  Optionally, the matrices Q and Z of generalized Schur vectors are
   30: *  updated.
   31: *
   32: *         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
   33: *         Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
   34: *
   35: *
   36: *  Arguments
   37: *  =========
   38: *
   39: *  WANTQ   (input) LOGICAL
   40: *          .TRUE. : update the left transformation matrix Q;
   41: *          .FALSE.: do not update Q.
   42: *
   43: *  WANTZ   (input) LOGICAL
   44: *          .TRUE. : update the right transformation matrix Z;
   45: *          .FALSE.: do not update Z.
   46: *
   47: *  N       (input) INTEGER
   48: *          The order of the matrices A and B. N >= 0.
   49: *
   50: *  A      (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N)
   51: *          On entry, the matrix A in the pair (A, B).
   52: *          On exit, the updated matrix A.
   53: *
   54: *  LDA     (input)  INTEGER
   55: *          The leading dimension of the array A. LDA >= max(1,N).
   56: *
   57: *  B      (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N)
   58: *          On entry, the matrix B in the pair (A, B).
   59: *          On exit, the updated matrix B.
   60: *
   61: *  LDB     (input)  INTEGER
   62: *          The leading dimension of the array B. LDB >= max(1,N).
   63: *
   64: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
   65: *          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
   66: *          On exit, the updated matrix Q.
   67: *          Not referenced if WANTQ = .FALSE..
   68: *
   69: *  LDQ     (input) INTEGER
   70: *          The leading dimension of the array Q. LDQ >= 1.
   71: *          If WANTQ = .TRUE., LDQ >= N.
   72: *
   73: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
   74: *          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
   75: *          On exit, the updated matrix Z.
   76: *          Not referenced if WANTZ = .FALSE..
   77: *
   78: *  LDZ     (input) INTEGER
   79: *          The leading dimension of the array Z. LDZ >= 1.
   80: *          If WANTZ = .TRUE., LDZ >= N.
   81: *
   82: *  J1      (input) INTEGER
   83: *          The index to the first block (A11, B11). 1 <= J1 <= N.
   84: *
   85: *  N1      (input) INTEGER
   86: *          The order of the first block (A11, B11). N1 = 0, 1 or 2.
   87: *
   88: *  N2      (input) INTEGER
   89: *          The order of the second block (A22, B22). N2 = 0, 1 or 2.
   90: *
   91: *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
   92: *
   93: *  LWORK   (input) INTEGER
   94: *          The dimension of the array WORK.
   95: *          LWORK >=  MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
   96: *
   97: *  INFO    (output) INTEGER
   98: *            =0: Successful exit
   99: *            >0: If INFO = 1, the transformed matrix (A, B) would be
  100: *                too far from generalized Schur form; the blocks are
  101: *                not swapped and (A, B) and (Q, Z) are unchanged.
  102: *                The problem of swapping is too ill-conditioned.
  103: *            <0: If INFO = -16: LWORK is too small. Appropriate value
  104: *                for LWORK is returned in WORK(1).
  105: *
  106: *  Further Details
  107: *  ===============
  108: *
  109: *  Based on contributions by
  110: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  111: *     Umea University, S-901 87 Umea, Sweden.
  112: *
  113: *  In the current code both weak and strong stability tests are
  114: *  performed. The user can omit the strong stability test by changing
  115: *  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
  116: *  details.
  117: *
  118: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  119: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  120: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  121: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  122: *
  123: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  124: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  125: *      Estimation: Theory, Algorithms and Software,
  126: *      Report UMINF - 94.04, Department of Computing Science, Umea
  127: *      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
  128: *      Note 87. To appear in Numerical Algorithms, 1996.
  129: *
  130: *  =====================================================================
  131: *  Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
  132: *  loops. Sven Hammarling, 1/5/02.
  133: *
  134: *     .. Parameters ..
  135:       DOUBLE PRECISION   ZERO, ONE
  136:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  137:       DOUBLE PRECISION   TEN
  138:       PARAMETER          ( TEN = 1.0D+01 )
  139:       INTEGER            LDST
  140:       PARAMETER          ( LDST = 4 )
  141:       LOGICAL            WANDS
  142:       PARAMETER          ( WANDS = .TRUE. )
  143: *     ..
  144: *     .. Local Scalars ..
  145:       LOGICAL            DTRONG, WEAK
  146:       INTEGER            I, IDUM, LINFO, M
  147:       DOUBLE PRECISION   BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS,
  148:      $                   F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS
  149: *     ..
  150: *     .. Local Arrays ..
  151:       INTEGER            IWORK( LDST )
  152:       DOUBLE PRECISION   AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
  153:      $                   IRCOP( LDST, LDST ), LI( LDST, LDST ),
  154:      $                   LICOP( LDST, LDST ), S( LDST, LDST ),
  155:      $                   SCPY( LDST, LDST ), T( LDST, LDST ),
  156:      $                   TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
  157: *     ..
  158: *     .. External Functions ..
  159:       DOUBLE PRECISION   DLAMCH
  160:       EXTERNAL           DLAMCH
  161: *     ..
  162: *     .. External Subroutines ..
  163:       EXTERNAL           DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
  164:      $                   DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
  165:      $                   DROT, DSCAL, DTGSY2
  166: *     ..
  167: *     .. Intrinsic Functions ..
  168:       INTRINSIC          ABS, MAX, SQRT
  169: *     ..
  170: *     .. Executable Statements ..
  171: *
  172:       INFO = 0
  173: *
  174: *     Quick return if possible
  175: *
  176:       IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
  177:      $   RETURN
  178:       IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
  179:      $   RETURN
  180:       M = N1 + N2
  181:       IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN
  182:          INFO = -16
  183:          WORK( 1 ) = MAX( 1, N*M, M*M*2 )
  184:          RETURN
  185:       END IF
  186: *
  187:       WEAK = .FALSE.
  188:       DTRONG = .FALSE.
  189: *
  190: *     Make a local copy of selected block
  191: *
  192:       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
  193:       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
  194:       CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
  195:       CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
  196: *
  197: *     Compute threshold for testing acceptance of swapping.
  198: *
  199:       EPS = DLAMCH( 'P' )
  200:       SMLNUM = DLAMCH( 'S' ) / EPS
  201:       DSCALE = ZERO
  202:       DSUM = ONE
  203:       CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
  204:       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
  205:       CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
  206:       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
  207:       DNORM = DSCALE*SQRT( DSUM )
  208:       THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
  209: *
  210:       IF( M.EQ.2 ) THEN
  211: *
  212: *        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
  213: *
  214: *        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
  215: *        using Givens rotations and perform the swap tentatively.
  216: *
  217:          F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
  218:          G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
  219:          SB = ABS( T( 2, 2 ) )
  220:          SA = ABS( S( 2, 2 ) )
  221:          CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
  222:          IR( 2, 1 ) = -IR( 1, 2 )
  223:          IR( 2, 2 ) = IR( 1, 1 )
  224:          CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
  225:      $              IR( 2, 1 ) )
  226:          CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
  227:      $              IR( 2, 1 ) )
  228:          IF( SA.GE.SB ) THEN
  229:             CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
  230:      $                   DDUM )
  231:          ELSE
  232:             CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
  233:      $                   DDUM )
  234:          END IF
  235:          CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
  236:      $              LI( 2, 1 ) )
  237:          CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
  238:      $              LI( 2, 1 ) )
  239:          LI( 2, 2 ) = LI( 1, 1 )
  240:          LI( 1, 2 ) = -LI( 2, 1 )
  241: *
  242: *        Weak stability test:
  243: *           |S21| + |T21| <= O(EPS * F-norm((S, T)))
  244: *
  245:          WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
  246:          WEAK = WS.LE.THRESH
  247:          IF( .NOT.WEAK )
  248:      $      GO TO 70
  249: *
  250:          IF( WANDS ) THEN
  251: *
  252: *           Strong stability test:
  253: *             F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B)))
  254: *
  255:             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
  256:      $                   M )
  257:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
  258:      $                  WORK, M )
  259:             CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
  260:      $                  WORK( M*M+1 ), M )
  261:             DSCALE = ZERO
  262:             DSUM = ONE
  263:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
  264: *
  265:             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
  266:      $                   M )
  267:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
  268:      $                  WORK, M )
  269:             CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
  270:      $                  WORK( M*M+1 ), M )
  271:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
  272:             SS = DSCALE*SQRT( DSUM )
  273:             DTRONG = SS.LE.THRESH
  274:             IF( .NOT.DTRONG )
  275:      $         GO TO 70
  276:          END IF
  277: *
  278: *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
  279: *               (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
  280: *
  281:          CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
  282:      $              IR( 2, 1 ) )
  283:          CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
  284:      $              IR( 2, 1 ) )
  285:          CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
  286:      $              LI( 1, 1 ), LI( 2, 1 ) )
  287:          CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
  288:      $              LI( 1, 1 ), LI( 2, 1 ) )
  289: *
  290: *        Set  N1-by-N2 (2,1) - blocks to ZERO.
  291: *
  292:          A( J1+1, J1 ) = ZERO
  293:          B( J1+1, J1 ) = ZERO
  294: *
  295: *        Accumulate transformations into Q and Z if requested.
  296: *
  297:          IF( WANTZ )
  298:      $      CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
  299:      $                 IR( 2, 1 ) )
  300:          IF( WANTQ )
  301:      $      CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
  302:      $                 LI( 2, 1 ) )
  303: *
  304: *        Exit with INFO = 0 if swap was successfully performed.
  305: *
  306:          RETURN
  307: *
  308:       ELSE
  309: *
  310: *        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
  311: *                and 2-by-2 blocks.
  312: *
  313: *        Solve the generalized Sylvester equation
  314: *                 S11 * R - L * S22 = SCALE * S12
  315: *                 T11 * R - L * T22 = SCALE * T12
  316: *        for R and L. Solutions in LI and IR.
  317: *
  318:          CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
  319:          CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
  320:      $                IR( N2+1, N1+1 ), LDST )
  321:          CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
  322:      $                IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
  323:      $                LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
  324:      $                LINFO )
  325: *
  326: *        Compute orthogonal matrix QL:
  327: *
  328: *                    QL' * LI = [ TL ]
  329: *                               [ 0  ]
  330: *        where
  331: *                    LI =  [      -L              ]
  332: *                          [ SCALE * identity(N2) ]
  333: *
  334:          DO 10 I = 1, N2
  335:             CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
  336:             LI( N1+I, I ) = SCALE
  337:    10    CONTINUE
  338:          CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
  339:          IF( LINFO.NE.0 )
  340:      $      GO TO 70
  341:          CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
  342:          IF( LINFO.NE.0 )
  343:      $      GO TO 70
  344: *
  345: *        Compute orthogonal matrix RQ:
  346: *
  347: *                    IR * RQ' =   [ 0  TR],
  348: *
  349: *         where IR = [ SCALE * identity(N1), R ]
  350: *
  351:          DO 20 I = 1, N1
  352:             IR( N2+I, I ) = SCALE
  353:    20    CONTINUE
  354:          CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
  355:          IF( LINFO.NE.0 )
  356:      $      GO TO 70
  357:          CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
  358:          IF( LINFO.NE.0 )
  359:      $      GO TO 70
  360: *
  361: *        Perform the swapping tentatively:
  362: *
  363:          CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
  364:      $               WORK, M )
  365:          CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
  366:      $               LDST )
  367:          CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
  368:      $               WORK, M )
  369:          CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
  370:      $               LDST )
  371:          CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
  372:          CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
  373:          CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
  374:          CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
  375: *
  376: *        Triangularize the B-part by an RQ factorization.
  377: *        Apply transformation (from left) to A-part, giving S.
  378: *
  379:          CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
  380:          IF( LINFO.NE.0 )
  381:      $      GO TO 70
  382:          CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
  383:      $                LINFO )
  384:          IF( LINFO.NE.0 )
  385:      $      GO TO 70
  386:          CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
  387:      $                LINFO )
  388:          IF( LINFO.NE.0 )
  389:      $      GO TO 70
  390: *
  391: *        Compute F-norm(S21) in BRQA21. (T21 is 0.)
  392: *
  393:          DSCALE = ZERO
  394:          DSUM = ONE
  395:          DO 30 I = 1, N2
  396:             CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
  397:    30    CONTINUE
  398:          BRQA21 = DSCALE*SQRT( DSUM )
  399: *
  400: *        Triangularize the B-part by a QR factorization.
  401: *        Apply transformation (from right) to A-part, giving S.
  402: *
  403:          CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
  404:          IF( LINFO.NE.0 )
  405:      $      GO TO 70
  406:          CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
  407:      $                WORK, INFO )
  408:          CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
  409:      $                WORK, INFO )
  410:          IF( LINFO.NE.0 )
  411:      $      GO TO 70
  412: *
  413: *        Compute F-norm(S21) in BQRA21. (T21 is 0.)
  414: *
  415:          DSCALE = ZERO
  416:          DSUM = ONE
  417:          DO 40 I = 1, N2
  418:             CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
  419:    40    CONTINUE
  420:          BQRA21 = DSCALE*SQRT( DSUM )
  421: *
  422: *        Decide which method to use.
  423: *          Weak stability test:
  424: *             F-norm(S21) <= O(EPS * F-norm((S, T)))
  425: *
  426:          IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN
  427:             CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
  428:             CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
  429:             CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
  430:             CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
  431:          ELSE IF( BRQA21.GE.THRESH ) THEN
  432:             GO TO 70
  433:          END IF
  434: *
  435: *        Set lower triangle of B-part to zero
  436: *
  437:          CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
  438: *
  439:          IF( WANDS ) THEN
  440: *
  441: *           Strong stability test:
  442: *              F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B)))
  443: *
  444:             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
  445:      $                   M )
  446:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
  447:      $                  WORK, M )
  448:             CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
  449:      $                  WORK( M*M+1 ), M )
  450:             DSCALE = ZERO
  451:             DSUM = ONE
  452:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
  453: *
  454:             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
  455:      $                   M )
  456:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
  457:      $                  WORK, M )
  458:             CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
  459:      $                  WORK( M*M+1 ), M )
  460:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
  461:             SS = DSCALE*SQRT( DSUM )
  462:             DTRONG = ( SS.LE.THRESH )
  463:             IF( .NOT.DTRONG )
  464:      $         GO TO 70
  465: *
  466:          END IF
  467: *
  468: *        If the swap is accepted ("weakly" and "strongly"), apply the
  469: *        transformations and set N1-by-N2 (2,1)-block to zero.
  470: *
  471:          CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
  472: *
  473: *        copy back M-by-M diagonal block starting at index J1 of (A, B)
  474: *
  475:          CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
  476:          CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
  477:          CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
  478: *
  479: *        Standardize existing 2-by-2 blocks.
  480: *
  481:          DO 50 I = 1, M*M
  482:             WORK(I) = ZERO
  483:    50    CONTINUE
  484:          WORK( 1 ) = ONE
  485:          T( 1, 1 ) = ONE
  486:          IDUM = LWORK - M*M - 2
  487:          IF( N2.GT.1 ) THEN
  488:             CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
  489:      $                   WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
  490:             WORK( M+1 ) = -WORK( 2 )
  491:             WORK( M+2 ) = WORK( 1 )
  492:             T( N2, N2 ) = T( 1, 1 )
  493:             T( 1, 2 ) = -T( 2, 1 )
  494:          END IF
  495:          WORK( M*M ) = ONE
  496:          T( M, M ) = ONE
  497: *
  498:          IF( N1.GT.1 ) THEN
  499:             CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
  500:      $                   TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
  501:      $                   WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
  502:      $                   T( M, M-1 ) )
  503:             WORK( M*M ) = WORK( N2*M+N2+1 )
  504:             WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
  505:             T( M, M ) = T( N2+1, N2+1 )
  506:             T( M-1, M ) = -T( M, M-1 )
  507:          END IF
  508:          CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
  509:      $               LDA, ZERO, WORK( M*M+1 ), N2 )
  510:          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
  511:      $                LDA )
  512:          CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
  513:      $               LDB, ZERO, WORK( M*M+1 ), N2 )
  514:          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
  515:      $                LDB )
  516:          CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
  517:      $               WORK( M*M+1 ), M )
  518:          CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
  519:          CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
  520:      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
  521:          CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
  522:          CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
  523:      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
  524:          CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
  525:          CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
  526:      $               WORK, M )
  527:          CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
  528: *
  529: *        Accumulate transformations into Q and Z if requested.
  530: *
  531:          IF( WANTQ ) THEN
  532:             CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
  533:      $                  LDST, ZERO, WORK, N )
  534:             CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
  535: *
  536:          END IF
  537: *
  538:          IF( WANTZ ) THEN
  539:             CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
  540:      $                  LDST, ZERO, WORK, N )
  541:             CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
  542: *
  543:          END IF
  544: *
  545: *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
  546: *                (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
  547: *
  548:          I = J1 + M
  549:          IF( I.LE.N ) THEN
  550:             CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
  551:      $                  A( J1, I ), LDA, ZERO, WORK, M )
  552:             CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
  553:             CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
  554:      $                  B( J1, I ), LDA, ZERO, WORK, M )
  555:             CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
  556:          END IF
  557:          I = J1 - 1
  558:          IF( I.GT.0 ) THEN
  559:             CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
  560:      $                  LDST, ZERO, WORK, I )
  561:             CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
  562:             CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
  563:      $                  LDST, ZERO, WORK, I )
  564:             CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
  565:          END IF
  566: *
  567: *        Exit with INFO = 0 if swap was successfully performed.
  568: *
  569:          RETURN
  570: *
  571:       END IF
  572: *
  573: *     Exit with INFO = 1 if swap was rejected.
  574: *
  575:    70 CONTINUE
  576: *
  577:       INFO = 1
  578:       RETURN
  579: *
  580: *     End of DTGEX2
  581: *
  582:       END

CVSweb interface <joel.bertrand@systella.fr>