Annotation of rpl/lapack/lapack/dtgex2.f, revision 1.19

1.13      bertrand    1: *> \brief \b DTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal equivalence transformation.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.18      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.18      bertrand    9: *> Download DTGEX2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.f">
1.10      bertrand   15: *> [TXT]</a>
1.18      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                     22: *                          LDZ, J1, N1, N2, WORK, LWORK, INFO )
1.18      bertrand   23: *
1.10      bertrand   24: *       .. Scalar Arguments ..
                     25: *       LOGICAL            WANTQ, WANTZ
                     26: *       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     30: *      $                   WORK( * ), Z( LDZ, * )
                     31: *       ..
1.18      bertrand   32: *
1.10      bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
                     40: *> of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
                     41: *> (A, B) by an orthogonal equivalence transformation.
                     42: *>
                     43: *> (A, B) must be in generalized real Schur canonical form (as returned
                     44: *> by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
                     45: *> diagonal blocks. B is upper triangular.
                     46: *>
                     47: *> Optionally, the matrices Q and Z of generalized Schur vectors are
                     48: *> updated.
                     49: *>
                     50: *>        Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
                     51: *>        Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
                     52: *>
                     53: *> \endverbatim
                     54: *
                     55: *  Arguments:
                     56: *  ==========
                     57: *
                     58: *> \param[in] WANTQ
                     59: *> \verbatim
                     60: *>          WANTQ is LOGICAL
                     61: *>          .TRUE. : update the left transformation matrix Q;
                     62: *>          .FALSE.: do not update Q.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] WANTZ
                     66: *> \verbatim
                     67: *>          WANTZ is LOGICAL
                     68: *>          .TRUE. : update the right transformation matrix Z;
                     69: *>          .FALSE.: do not update Z.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] N
                     73: *> \verbatim
                     74: *>          N is INTEGER
                     75: *>          The order of the matrices A and B. N >= 0.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] A
                     79: *> \verbatim
                     80: *>          A is DOUBLE PRECISION array, dimensions (LDA,N)
                     81: *>          On entry, the matrix A in the pair (A, B).
                     82: *>          On exit, the updated matrix A.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] LDA
                     86: *> \verbatim
                     87: *>          LDA is INTEGER
                     88: *>          The leading dimension of the array A. LDA >= max(1,N).
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in,out] B
                     92: *> \verbatim
                     93: *>          B is DOUBLE PRECISION array, dimensions (LDB,N)
                     94: *>          On entry, the matrix B in the pair (A, B).
                     95: *>          On exit, the updated matrix B.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] LDB
                     99: *> \verbatim
                    100: *>          LDB is INTEGER
                    101: *>          The leading dimension of the array B. LDB >= max(1,N).
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in,out] Q
                    105: *> \verbatim
                    106: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                    107: *>          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
                    108: *>          On exit, the updated matrix Q.
                    109: *>          Not referenced if WANTQ = .FALSE..
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDQ
                    113: *> \verbatim
                    114: *>          LDQ is INTEGER
                    115: *>          The leading dimension of the array Q. LDQ >= 1.
                    116: *>          If WANTQ = .TRUE., LDQ >= N.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in,out] Z
                    120: *> \verbatim
                    121: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
                    122: *>          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
                    123: *>          On exit, the updated matrix Z.
                    124: *>          Not referenced if WANTZ = .FALSE..
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] LDZ
                    128: *> \verbatim
                    129: *>          LDZ is INTEGER
                    130: *>          The leading dimension of the array Z. LDZ >= 1.
                    131: *>          If WANTZ = .TRUE., LDZ >= N.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] J1
                    135: *> \verbatim
                    136: *>          J1 is INTEGER
                    137: *>          The index to the first block (A11, B11). 1 <= J1 <= N.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] N1
                    141: *> \verbatim
                    142: *>          N1 is INTEGER
                    143: *>          The order of the first block (A11, B11). N1 = 0, 1 or 2.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] N2
                    147: *> \verbatim
                    148: *>          N2 is INTEGER
                    149: *>          The order of the second block (A22, B22). N2 = 0, 1 or 2.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] WORK
                    153: *> \verbatim
                    154: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[in] LWORK
                    158: *> \verbatim
                    159: *>          LWORK is INTEGER
                    160: *>          The dimension of the array WORK.
                    161: *>          LWORK >=  MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] INFO
                    165: *> \verbatim
                    166: *>          INFO is INTEGER
                    167: *>            =0: Successful exit
                    168: *>            >0: If INFO = 1, the transformed matrix (A, B) would be
                    169: *>                too far from generalized Schur form; the blocks are
                    170: *>                not swapped and (A, B) and (Q, Z) are unchanged.
                    171: *>                The problem of swapping is too ill-conditioned.
                    172: *>            <0: If INFO = -16: LWORK is too small. Appropriate value
                    173: *>                for LWORK is returned in WORK(1).
                    174: *> \endverbatim
                    175: *
                    176: *  Authors:
                    177: *  ========
                    178: *
1.18      bertrand  179: *> \author Univ. of Tennessee
                    180: *> \author Univ. of California Berkeley
                    181: *> \author Univ. of Colorado Denver
                    182: *> \author NAG Ltd.
1.10      bertrand  183: *
1.18      bertrand  184: *> \date December 2016
1.10      bertrand  185: *
                    186: *> \ingroup doubleGEauxiliary
                    187: *
                    188: *> \par Further Details:
                    189: *  =====================
                    190: *>
                    191: *>  In the current code both weak and strong stability tests are
                    192: *>  performed. The user can omit the strong stability test by changing
                    193: *>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
                    194: *>  details.
                    195: *
                    196: *> \par Contributors:
                    197: *  ==================
                    198: *>
                    199: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    200: *>     Umea University, S-901 87 Umea, Sweden.
                    201: *
                    202: *> \par References:
                    203: *  ================
                    204: *>
                    205: *> \verbatim
                    206: *>
                    207: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    208: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    209: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    210: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    211: *>
                    212: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    213: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    214: *>      Estimation: Theory, Algorithms and Software,
                    215: *>      Report UMINF - 94.04, Department of Computing Science, Umea
                    216: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
                    217: *>      Note 87. To appear in Numerical Algorithms, 1996.
                    218: *> \endverbatim
                    219: *>
                    220: *  =====================================================================
1.1       bertrand  221:       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                    222:      $                   LDZ, J1, N1, N2, WORK, LWORK, INFO )
                    223: *
1.18      bertrand  224: *  -- LAPACK auxiliary routine (version 3.7.0) --
1.1       bertrand  225: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    226: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.18      bertrand  227: *     December 2016
1.1       bertrand  228: *
                    229: *     .. Scalar Arguments ..
                    230:       LOGICAL            WANTQ, WANTZ
                    231:       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
                    232: *     ..
                    233: *     .. Array Arguments ..
                    234:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                    235:      $                   WORK( * ), Z( LDZ, * )
                    236: *     ..
                    237: *
                    238: *  =====================================================================
                    239: *  Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
                    240: *  loops. Sven Hammarling, 1/5/02.
                    241: *
                    242: *     .. Parameters ..
                    243:       DOUBLE PRECISION   ZERO, ONE
                    244:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
1.5       bertrand  245:       DOUBLE PRECISION   TWENTY
                    246:       PARAMETER          ( TWENTY = 2.0D+01 )
1.1       bertrand  247:       INTEGER            LDST
                    248:       PARAMETER          ( LDST = 4 )
                    249:       LOGICAL            WANDS
                    250:       PARAMETER          ( WANDS = .TRUE. )
                    251: *     ..
                    252: *     .. Local Scalars ..
                    253:       LOGICAL            DTRONG, WEAK
                    254:       INTEGER            I, IDUM, LINFO, M
                    255:       DOUBLE PRECISION   BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS,
                    256:      $                   F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS
                    257: *     ..
                    258: *     .. Local Arrays ..
                    259:       INTEGER            IWORK( LDST )
                    260:       DOUBLE PRECISION   AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
                    261:      $                   IRCOP( LDST, LDST ), LI( LDST, LDST ),
                    262:      $                   LICOP( LDST, LDST ), S( LDST, LDST ),
                    263:      $                   SCPY( LDST, LDST ), T( LDST, LDST ),
                    264:      $                   TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
                    265: *     ..
                    266: *     .. External Functions ..
                    267:       DOUBLE PRECISION   DLAMCH
                    268:       EXTERNAL           DLAMCH
                    269: *     ..
                    270: *     .. External Subroutines ..
                    271:       EXTERNAL           DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
                    272:      $                   DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
                    273:      $                   DROT, DSCAL, DTGSY2
                    274: *     ..
                    275: *     .. Intrinsic Functions ..
                    276:       INTRINSIC          ABS, MAX, SQRT
                    277: *     ..
                    278: *     .. Executable Statements ..
                    279: *
                    280:       INFO = 0
                    281: *
                    282: *     Quick return if possible
                    283: *
                    284:       IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
                    285:      $   RETURN
                    286:       IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
                    287:      $   RETURN
                    288:       M = N1 + N2
                    289:       IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN
                    290:          INFO = -16
                    291:          WORK( 1 ) = MAX( 1, N*M, M*M*2 )
                    292:          RETURN
                    293:       END IF
                    294: *
                    295:       WEAK = .FALSE.
                    296:       DTRONG = .FALSE.
                    297: *
                    298: *     Make a local copy of selected block
                    299: *
                    300:       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
                    301:       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
                    302:       CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
                    303:       CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
                    304: *
                    305: *     Compute threshold for testing acceptance of swapping.
                    306: *
                    307:       EPS = DLAMCH( 'P' )
                    308:       SMLNUM = DLAMCH( 'S' ) / EPS
                    309:       DSCALE = ZERO
                    310:       DSUM = ONE
                    311:       CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
                    312:       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
                    313:       CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
                    314:       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
                    315:       DNORM = DSCALE*SQRT( DSUM )
1.5       bertrand  316: *
1.18      bertrand  317: *     THRES has been changed from
1.5       bertrand  318: *        THRESH = MAX( TEN*EPS*SA, SMLNUM )
                    319: *     to
                    320: *        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
                    321: *     on 04/01/10.
                    322: *     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
                    323: *     Jim Demmel and Guillaume Revy. See forum post 1783.
                    324: *
                    325:       THRESH = MAX( TWENTY*EPS*DNORM, SMLNUM )
1.1       bertrand  326: *
                    327:       IF( M.EQ.2 ) THEN
                    328: *
                    329: *        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
                    330: *
                    331: *        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
                    332: *        using Givens rotations and perform the swap tentatively.
                    333: *
                    334:          F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
                    335:          G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
                    336:          SB = ABS( T( 2, 2 ) )
                    337:          SA = ABS( S( 2, 2 ) )
                    338:          CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
                    339:          IR( 2, 1 ) = -IR( 1, 2 )
                    340:          IR( 2, 2 ) = IR( 1, 1 )
                    341:          CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
                    342:      $              IR( 2, 1 ) )
                    343:          CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
                    344:      $              IR( 2, 1 ) )
                    345:          IF( SA.GE.SB ) THEN
                    346:             CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
                    347:      $                   DDUM )
                    348:          ELSE
                    349:             CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
                    350:      $                   DDUM )
                    351:          END IF
                    352:          CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
                    353:      $              LI( 2, 1 ) )
                    354:          CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
                    355:      $              LI( 2, 1 ) )
                    356:          LI( 2, 2 ) = LI( 1, 1 )
                    357:          LI( 1, 2 ) = -LI( 2, 1 )
                    358: *
                    359: *        Weak stability test:
                    360: *           |S21| + |T21| <= O(EPS * F-norm((S, T)))
                    361: *
                    362:          WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
                    363:          WEAK = WS.LE.THRESH
                    364:          IF( .NOT.WEAK )
                    365:      $      GO TO 70
                    366: *
                    367:          IF( WANDS ) THEN
                    368: *
                    369: *           Strong stability test:
1.9       bertrand  370: *             F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A,B)))
1.1       bertrand  371: *
                    372:             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
                    373:      $                   M )
                    374:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
                    375:      $                  WORK, M )
                    376:             CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
                    377:      $                  WORK( M*M+1 ), M )
                    378:             DSCALE = ZERO
                    379:             DSUM = ONE
                    380:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
                    381: *
                    382:             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
                    383:      $                   M )
                    384:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
                    385:      $                  WORK, M )
                    386:             CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
                    387:      $                  WORK( M*M+1 ), M )
                    388:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
                    389:             SS = DSCALE*SQRT( DSUM )
                    390:             DTRONG = SS.LE.THRESH
                    391:             IF( .NOT.DTRONG )
                    392:      $         GO TO 70
                    393:          END IF
                    394: *
                    395: *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
                    396: *               (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
                    397: *
                    398:          CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
                    399:      $              IR( 2, 1 ) )
                    400:          CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
                    401:      $              IR( 2, 1 ) )
                    402:          CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
                    403:      $              LI( 1, 1 ), LI( 2, 1 ) )
                    404:          CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
                    405:      $              LI( 1, 1 ), LI( 2, 1 ) )
                    406: *
                    407: *        Set  N1-by-N2 (2,1) - blocks to ZERO.
                    408: *
                    409:          A( J1+1, J1 ) = ZERO
                    410:          B( J1+1, J1 ) = ZERO
                    411: *
                    412: *        Accumulate transformations into Q and Z if requested.
                    413: *
                    414:          IF( WANTZ )
                    415:      $      CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
                    416:      $                 IR( 2, 1 ) )
                    417:          IF( WANTQ )
                    418:      $      CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
                    419:      $                 LI( 2, 1 ) )
                    420: *
                    421: *        Exit with INFO = 0 if swap was successfully performed.
                    422: *
                    423:          RETURN
                    424: *
                    425:       ELSE
                    426: *
                    427: *        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
                    428: *                and 2-by-2 blocks.
                    429: *
                    430: *        Solve the generalized Sylvester equation
                    431: *                 S11 * R - L * S22 = SCALE * S12
                    432: *                 T11 * R - L * T22 = SCALE * T12
                    433: *        for R and L. Solutions in LI and IR.
                    434: *
                    435:          CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
                    436:          CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
                    437:      $                IR( N2+1, N1+1 ), LDST )
                    438:          CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
                    439:      $                IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
                    440:      $                LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
                    441:      $                LINFO )
                    442: *
                    443: *        Compute orthogonal matrix QL:
                    444: *
1.9       bertrand  445: *                    QL**T * LI = [ TL ]
                    446: *                                 [ 0  ]
1.1       bertrand  447: *        where
                    448: *                    LI =  [      -L              ]
                    449: *                          [ SCALE * identity(N2) ]
                    450: *
                    451:          DO 10 I = 1, N2
                    452:             CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
                    453:             LI( N1+I, I ) = SCALE
                    454:    10    CONTINUE
                    455:          CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
                    456:          IF( LINFO.NE.0 )
                    457:      $      GO TO 70
                    458:          CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
                    459:          IF( LINFO.NE.0 )
                    460:      $      GO TO 70
                    461: *
                    462: *        Compute orthogonal matrix RQ:
                    463: *
1.9       bertrand  464: *                    IR * RQ**T =   [ 0  TR],
1.1       bertrand  465: *
                    466: *         where IR = [ SCALE * identity(N1), R ]
                    467: *
                    468:          DO 20 I = 1, N1
                    469:             IR( N2+I, I ) = SCALE
                    470:    20    CONTINUE
                    471:          CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
                    472:          IF( LINFO.NE.0 )
                    473:      $      GO TO 70
                    474:          CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
                    475:          IF( LINFO.NE.0 )
                    476:      $      GO TO 70
                    477: *
                    478: *        Perform the swapping tentatively:
                    479: *
                    480:          CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
                    481:      $               WORK, M )
                    482:          CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
                    483:      $               LDST )
                    484:          CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
                    485:      $               WORK, M )
                    486:          CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
                    487:      $               LDST )
                    488:          CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
                    489:          CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
                    490:          CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
                    491:          CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
                    492: *
                    493: *        Triangularize the B-part by an RQ factorization.
                    494: *        Apply transformation (from left) to A-part, giving S.
                    495: *
                    496:          CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
                    497:          IF( LINFO.NE.0 )
                    498:      $      GO TO 70
                    499:          CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
                    500:      $                LINFO )
                    501:          IF( LINFO.NE.0 )
                    502:      $      GO TO 70
                    503:          CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
                    504:      $                LINFO )
                    505:          IF( LINFO.NE.0 )
                    506:      $      GO TO 70
                    507: *
                    508: *        Compute F-norm(S21) in BRQA21. (T21 is 0.)
                    509: *
                    510:          DSCALE = ZERO
                    511:          DSUM = ONE
                    512:          DO 30 I = 1, N2
                    513:             CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
                    514:    30    CONTINUE
                    515:          BRQA21 = DSCALE*SQRT( DSUM )
                    516: *
                    517: *        Triangularize the B-part by a QR factorization.
                    518: *        Apply transformation (from right) to A-part, giving S.
                    519: *
                    520:          CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
                    521:          IF( LINFO.NE.0 )
                    522:      $      GO TO 70
                    523:          CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
                    524:      $                WORK, INFO )
                    525:          CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
                    526:      $                WORK, INFO )
                    527:          IF( LINFO.NE.0 )
                    528:      $      GO TO 70
                    529: *
                    530: *        Compute F-norm(S21) in BQRA21. (T21 is 0.)
                    531: *
                    532:          DSCALE = ZERO
                    533:          DSUM = ONE
                    534:          DO 40 I = 1, N2
                    535:             CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
                    536:    40    CONTINUE
                    537:          BQRA21 = DSCALE*SQRT( DSUM )
                    538: *
                    539: *        Decide which method to use.
                    540: *          Weak stability test:
                    541: *             F-norm(S21) <= O(EPS * F-norm((S, T)))
                    542: *
                    543:          IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN
                    544:             CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
                    545:             CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
                    546:             CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
                    547:             CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
                    548:          ELSE IF( BRQA21.GE.THRESH ) THEN
                    549:             GO TO 70
                    550:          END IF
                    551: *
                    552: *        Set lower triangle of B-part to zero
                    553: *
                    554:          CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
                    555: *
                    556:          IF( WANDS ) THEN
                    557: *
                    558: *           Strong stability test:
1.9       bertrand  559: *              F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B)))
1.1       bertrand  560: *
                    561:             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
                    562:      $                   M )
                    563:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
                    564:      $                  WORK, M )
                    565:             CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
                    566:      $                  WORK( M*M+1 ), M )
                    567:             DSCALE = ZERO
                    568:             DSUM = ONE
                    569:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
                    570: *
                    571:             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
                    572:      $                   M )
                    573:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
                    574:      $                  WORK, M )
                    575:             CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
                    576:      $                  WORK( M*M+1 ), M )
                    577:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
                    578:             SS = DSCALE*SQRT( DSUM )
                    579:             DTRONG = ( SS.LE.THRESH )
                    580:             IF( .NOT.DTRONG )
                    581:      $         GO TO 70
                    582: *
                    583:          END IF
                    584: *
                    585: *        If the swap is accepted ("weakly" and "strongly"), apply the
                    586: *        transformations and set N1-by-N2 (2,1)-block to zero.
                    587: *
                    588:          CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
                    589: *
                    590: *        copy back M-by-M diagonal block starting at index J1 of (A, B)
                    591: *
                    592:          CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
                    593:          CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
                    594:          CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
                    595: *
                    596: *        Standardize existing 2-by-2 blocks.
                    597: *
1.16      bertrand  598:          CALL DLASET( 'Full', M, M, ZERO, ZERO, WORK, M )
1.1       bertrand  599:          WORK( 1 ) = ONE
                    600:          T( 1, 1 ) = ONE
                    601:          IDUM = LWORK - M*M - 2
                    602:          IF( N2.GT.1 ) THEN
                    603:             CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
                    604:      $                   WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
                    605:             WORK( M+1 ) = -WORK( 2 )
                    606:             WORK( M+2 ) = WORK( 1 )
                    607:             T( N2, N2 ) = T( 1, 1 )
                    608:             T( 1, 2 ) = -T( 2, 1 )
                    609:          END IF
                    610:          WORK( M*M ) = ONE
                    611:          T( M, M ) = ONE
                    612: *
                    613:          IF( N1.GT.1 ) THEN
                    614:             CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
                    615:      $                   TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
                    616:      $                   WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
                    617:      $                   T( M, M-1 ) )
                    618:             WORK( M*M ) = WORK( N2*M+N2+1 )
                    619:             WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
                    620:             T( M, M ) = T( N2+1, N2+1 )
                    621:             T( M-1, M ) = -T( M, M-1 )
                    622:          END IF
                    623:          CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
                    624:      $               LDA, ZERO, WORK( M*M+1 ), N2 )
                    625:          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
                    626:      $                LDA )
                    627:          CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
                    628:      $               LDB, ZERO, WORK( M*M+1 ), N2 )
                    629:          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
                    630:      $                LDB )
                    631:          CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
                    632:      $               WORK( M*M+1 ), M )
                    633:          CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
                    634:          CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
                    635:      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
                    636:          CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
                    637:          CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
                    638:      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
                    639:          CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
                    640:          CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
                    641:      $               WORK, M )
                    642:          CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
                    643: *
                    644: *        Accumulate transformations into Q and Z if requested.
                    645: *
                    646:          IF( WANTQ ) THEN
                    647:             CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
                    648:      $                  LDST, ZERO, WORK, N )
                    649:             CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
                    650: *
                    651:          END IF
                    652: *
                    653:          IF( WANTZ ) THEN
                    654:             CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
                    655:      $                  LDST, ZERO, WORK, N )
                    656:             CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
                    657: *
                    658:          END IF
                    659: *
                    660: *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
                    661: *                (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
                    662: *
                    663:          I = J1 + M
                    664:          IF( I.LE.N ) THEN
                    665:             CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
                    666:      $                  A( J1, I ), LDA, ZERO, WORK, M )
                    667:             CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
                    668:             CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
1.16      bertrand  669:      $                  B( J1, I ), LDB, ZERO, WORK, M )
1.1       bertrand  670:             CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
                    671:          END IF
                    672:          I = J1 - 1
                    673:          IF( I.GT.0 ) THEN
                    674:             CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
                    675:      $                  LDST, ZERO, WORK, I )
                    676:             CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
                    677:             CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
                    678:      $                  LDST, ZERO, WORK, I )
                    679:             CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
                    680:          END IF
                    681: *
                    682: *        Exit with INFO = 0 if swap was successfully performed.
                    683: *
                    684:          RETURN
                    685: *
                    686:       END IF
                    687: *
                    688: *     Exit with INFO = 1 if swap was rejected.
                    689: *
                    690:    70 CONTINUE
                    691: *
                    692:       INFO = 1
                    693:       RETURN
                    694: *
                    695: *     End of DTGEX2
                    696: *
                    697:       END

CVSweb interface <joel.bertrand@systella.fr>