File:  [local] / rpl / lapack / lapack / dtfttr.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:27 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2.2)                                    --
    4: *
    5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
    6: *  -- June 2010                                                       --
    7: *
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          TRANSR, UPLO
   13:       INTEGER            INFO, N, LDA
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   A( 0: LDA-1, 0: * ), ARF( 0: * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DTFTTR copies a triangular matrix A from rectangular full packed
   23: *  format (TF) to standard full format (TR).
   24: *
   25: *  Arguments
   26: *  =========
   27: *
   28: *  TRANSR  (input) CHARACTER
   29: *          = 'N':  ARF is in Normal format;
   30: *          = 'T':  ARF is in Transpose format.
   31: *
   32: *  UPLO    (input) CHARACTER
   33: *          = 'U':  A is upper triangular;
   34: *          = 'L':  A is lower triangular.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrices ARF and A. N >= 0.
   38: *
   39: *  ARF     (input) DOUBLE PRECISION array, dimension (N*(N+1)/2).
   40: *          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
   41: *          matrix A in RFP format. See the "Notes" below for more
   42: *          details.
   43: *
   44: *  A       (output) DOUBLE PRECISION array, dimension (LDA,N)
   45: *          On exit, the triangular matrix A.  If UPLO = 'U', the
   46: *          leading N-by-N upper triangular part of the array A contains
   47: *          the upper triangular matrix, and the strictly lower
   48: *          triangular part of A is not referenced.  If UPLO = 'L', the
   49: *          leading N-by-N lower triangular part of the array A contains
   50: *          the lower triangular matrix, and the strictly upper
   51: *          triangular part of A is not referenced.
   52: *
   53: *  LDA     (input) INTEGER
   54: *          The leading dimension of the array A.  LDA >= max(1,N).
   55: *
   56: *  INFO    (output) INTEGER
   57: *          = 0:  successful exit
   58: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   59: *
   60: *  Further Details
   61: *  ===============
   62: *
   63: *  We first consider Rectangular Full Packed (RFP) Format when N is
   64: *  even. We give an example where N = 6.
   65: *
   66: *      AP is Upper             AP is Lower
   67: *
   68: *   00 01 02 03 04 05       00
   69: *      11 12 13 14 15       10 11
   70: *         22 23 24 25       20 21 22
   71: *            33 34 35       30 31 32 33
   72: *               44 45       40 41 42 43 44
   73: *                  55       50 51 52 53 54 55
   74: *
   75: *
   76: *  Let TRANSR = 'N'. RFP holds AP as follows:
   77: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
   78: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
   79: *  the transpose of the first three columns of AP upper.
   80: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
   81: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
   82: *  the transpose of the last three columns of AP lower.
   83: *  This covers the case N even and TRANSR = 'N'.
   84: *
   85: *         RFP A                   RFP A
   86: *
   87: *        03 04 05                33 43 53
   88: *        13 14 15                00 44 54
   89: *        23 24 25                10 11 55
   90: *        33 34 35                20 21 22
   91: *        00 44 45                30 31 32
   92: *        01 11 55                40 41 42
   93: *        02 12 22                50 51 52
   94: *
   95: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
   96: *  transpose of RFP A above. One therefore gets:
   97: *
   98: *
   99: *           RFP A                   RFP A
  100: *
  101: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  102: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  103: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  104: *
  105: *
  106: *  We then consider Rectangular Full Packed (RFP) Format when N is
  107: *  odd. We give an example where N = 5.
  108: *
  109: *     AP is Upper                 AP is Lower
  110: *
  111: *   00 01 02 03 04              00
  112: *      11 12 13 14              10 11
  113: *         22 23 24              20 21 22
  114: *            33 34              30 31 32 33
  115: *               44              40 41 42 43 44
  116: *
  117: *
  118: *  Let TRANSR = 'N'. RFP holds AP as follows:
  119: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  120: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  121: *  the transpose of the first two columns of AP upper.
  122: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  123: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  124: *  the transpose of the last two columns of AP lower.
  125: *  This covers the case N odd and TRANSR = 'N'.
  126: *
  127: *         RFP A                   RFP A
  128: *
  129: *        02 03 04                00 33 43
  130: *        12 13 14                10 11 44
  131: *        22 23 24                20 21 22
  132: *        00 33 34                30 31 32
  133: *        01 11 44                40 41 42
  134: *
  135: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  136: *  transpose of RFP A above. One therefore gets:
  137: *
  138: *           RFP A                   RFP A
  139: *
  140: *     02 12 22 00 01             00 10 20 30 40 50
  141: *     03 13 23 33 11             33 11 21 31 41 51
  142: *     04 14 24 34 44             43 44 22 32 42 52
  143: *
  144: *  Reference
  145: *  =========
  146: *
  147: *  =====================================================================
  148: *
  149: *     ..
  150: *     .. Local Scalars ..
  151:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  152:       INTEGER            N1, N2, K, NT, NX2, NP1X2
  153:       INTEGER            I, J, L, IJ
  154: *     ..
  155: *     .. External Functions ..
  156:       LOGICAL            LSAME
  157:       EXTERNAL           LSAME
  158: *     ..
  159: *     .. External Subroutines ..
  160:       EXTERNAL           XERBLA
  161: *     ..
  162: *     .. Intrinsic Functions ..
  163:       INTRINSIC          MAX, MOD
  164: *     ..
  165: *     .. Executable Statements ..
  166: *
  167: *     Test the input parameters.
  168: *
  169:       INFO = 0
  170:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  171:       LOWER = LSAME( UPLO, 'L' )
  172:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  173:          INFO = -1
  174:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  175:          INFO = -2
  176:       ELSE IF( N.LT.0 ) THEN
  177:          INFO = -3
  178:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  179:          INFO = -6
  180:       END IF
  181:       IF( INFO.NE.0 ) THEN
  182:          CALL XERBLA( 'DTFTTR', -INFO )
  183:          RETURN
  184:       END IF
  185: *
  186: *     Quick return if possible
  187: *
  188:       IF( N.LE.1 ) THEN
  189:          IF( N.EQ.1 ) THEN
  190:             A( 0, 0 ) = ARF( 0 )
  191:          END IF
  192:          RETURN
  193:       END IF
  194: *
  195: *     Size of array ARF(0:nt-1)
  196: *
  197:       NT = N*( N+1 ) / 2
  198: *
  199: *     set N1 and N2 depending on LOWER: for N even N1=N2=K
  200: *
  201:       IF( LOWER ) THEN
  202:          N2 = N / 2
  203:          N1 = N - N2
  204:       ELSE
  205:          N1 = N / 2
  206:          N2 = N - N1
  207:       END IF
  208: *
  209: *     If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  210: *     If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  211: *     N--by--(N+1)/2.
  212: *
  213:       IF( MOD( N, 2 ).EQ.0 ) THEN
  214:          K = N / 2
  215:          NISODD = .FALSE.
  216:          IF( .NOT.LOWER )
  217:      +      NP1X2 = N + N + 2
  218:       ELSE
  219:          NISODD = .TRUE.
  220:          IF( .NOT.LOWER )
  221:      +      NX2 = N + N
  222:       END IF
  223: *
  224:       IF( NISODD ) THEN
  225: *
  226: *        N is odd
  227: *
  228:          IF( NORMALTRANSR ) THEN
  229: *
  230: *           N is odd and TRANSR = 'N'
  231: *
  232:             IF( LOWER ) THEN
  233: *
  234: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  235: *
  236:                IJ = 0
  237:                DO J = 0, N2
  238:                   DO I = N1, N2 + J
  239:                      A( N2+J, I ) = ARF( IJ )
  240:                      IJ = IJ + 1
  241:                   END DO
  242:                   DO I = J, N - 1
  243:                      A( I, J ) = ARF( IJ )
  244:                      IJ = IJ + 1
  245:                   END DO
  246:                END DO
  247: *
  248:             ELSE
  249: *
  250: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  251: *
  252:                IJ = NT - N
  253:                DO J = N - 1, N1, -1
  254:                   DO I = 0, J
  255:                      A( I, J ) = ARF( IJ )
  256:                      IJ = IJ + 1
  257:                   END DO
  258:                   DO L = J - N1, N1 - 1
  259:                      A( J-N1, L ) = ARF( IJ )
  260:                      IJ = IJ + 1
  261:                   END DO
  262:                   IJ = IJ - NX2
  263:                END DO
  264: *
  265:             END IF
  266: *
  267:          ELSE
  268: *
  269: *           N is odd and TRANSR = 'T'
  270: *
  271:             IF( LOWER ) THEN
  272: *
  273: *              N is odd, TRANSR = 'T', and UPLO = 'L'
  274: *
  275:                IJ = 0
  276:                DO J = 0, N2 - 1
  277:                   DO I = 0, J
  278:                      A( J, I ) = ARF( IJ )
  279:                      IJ = IJ + 1
  280:                   END DO
  281:                   DO I = N1 + J, N - 1
  282:                      A( I, N1+J ) = ARF( IJ )
  283:                      IJ = IJ + 1
  284:                   END DO
  285:                END DO
  286:                DO J = N2, N - 1
  287:                   DO I = 0, N1 - 1
  288:                      A( J, I ) = ARF( IJ )
  289:                      IJ = IJ + 1
  290:                   END DO
  291:                END DO
  292: *
  293:             ELSE
  294: *
  295: *              N is odd, TRANSR = 'T', and UPLO = 'U'
  296: *
  297:                IJ = 0
  298:                DO J = 0, N1
  299:                   DO I = N1, N - 1
  300:                      A( J, I ) = ARF( IJ )
  301:                      IJ = IJ + 1
  302:                   END DO
  303:                END DO
  304:                DO J = 0, N1 - 1
  305:                   DO I = 0, J
  306:                      A( I, J ) = ARF( IJ )
  307:                      IJ = IJ + 1
  308:                   END DO
  309:                   DO L = N2 + J, N - 1
  310:                      A( N2+J, L ) = ARF( IJ )
  311:                      IJ = IJ + 1
  312:                   END DO
  313:                END DO
  314: *
  315:             END IF
  316: *
  317:          END IF
  318: *
  319:       ELSE
  320: *
  321: *        N is even
  322: *
  323:          IF( NORMALTRANSR ) THEN
  324: *
  325: *           N is even and TRANSR = 'N'
  326: *
  327:             IF( LOWER ) THEN
  328: *
  329: *              N is even, TRANSR = 'N', and UPLO = 'L'
  330: *
  331:                IJ = 0
  332:                DO J = 0, K - 1
  333:                   DO I = K, K + J
  334:                      A( K+J, I ) = ARF( IJ )
  335:                      IJ = IJ + 1
  336:                   END DO
  337:                   DO I = J, N - 1
  338:                      A( I, J ) = ARF( IJ )
  339:                      IJ = IJ + 1
  340:                   END DO
  341:                END DO
  342: *
  343:             ELSE
  344: *
  345: *              N is even, TRANSR = 'N', and UPLO = 'U'
  346: *
  347:                IJ = NT - N - 1
  348:                DO J = N - 1, K, -1
  349:                   DO I = 0, J
  350:                      A( I, J ) = ARF( IJ )
  351:                      IJ = IJ + 1
  352:                   END DO
  353:                   DO L = J - K, K - 1
  354:                      A( J-K, L ) = ARF( IJ )
  355:                      IJ = IJ + 1
  356:                   END DO
  357:                   IJ = IJ - NP1X2
  358:                END DO
  359: *
  360:             END IF
  361: *
  362:          ELSE
  363: *
  364: *           N is even and TRANSR = 'T'
  365: *
  366:             IF( LOWER ) THEN
  367: *
  368: *              N is even, TRANSR = 'T', and UPLO = 'L'
  369: *
  370:                IJ = 0
  371:                J = K
  372:                DO I = K, N - 1
  373:                   A( I, J ) = ARF( IJ )
  374:                   IJ = IJ + 1
  375:                END DO
  376:                DO J = 0, K - 2
  377:                   DO I = 0, J
  378:                      A( J, I ) = ARF( IJ )
  379:                      IJ = IJ + 1
  380:                   END DO
  381:                   DO I = K + 1 + J, N - 1
  382:                      A( I, K+1+J ) = ARF( IJ )
  383:                      IJ = IJ + 1
  384:                   END DO
  385:                END DO
  386:                DO J = K - 1, N - 1
  387:                   DO I = 0, K - 1
  388:                      A( J, I ) = ARF( IJ )
  389:                      IJ = IJ + 1
  390:                   END DO
  391:                END DO
  392: *
  393:             ELSE
  394: *
  395: *              N is even, TRANSR = 'T', and UPLO = 'U'
  396: *
  397:                IJ = 0
  398:                DO J = 0, K
  399:                   DO I = K, N - 1
  400:                      A( J, I ) = ARF( IJ )
  401:                      IJ = IJ + 1
  402:                   END DO
  403:                END DO
  404:                DO J = 0, K - 2
  405:                   DO I = 0, J
  406:                      A( I, J ) = ARF( IJ )
  407:                      IJ = IJ + 1
  408:                   END DO
  409:                   DO L = K + 1 + J, N - 1
  410:                      A( K+1+J, L ) = ARF( IJ )
  411:                      IJ = IJ + 1
  412:                   END DO
  413:                END DO
  414: *              Note that here, on exit of the loop, J = K-1
  415:                DO I = 0, J
  416:                   A( I, J ) = ARF( IJ )
  417:                   IJ = IJ + 1
  418:                END DO
  419: *
  420:             END IF
  421: *
  422:          END IF
  423: *
  424:       END IF
  425: *
  426:       RETURN
  427: *
  428: *     End of DTFTTR
  429: *
  430:       END

CVSweb interface <joel.bertrand@systella.fr>