File:  [local] / rpl / lapack / lapack / dtfttr.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:27 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DTFTTR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtfttr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtfttr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtfttr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            INFO, N, LDA
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( 0: LDA-1, 0: * ), ARF( 0: * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DTFTTR copies a triangular matrix A from rectangular full packed
   38: *> format (TF) to standard full format (TR).
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] TRANSR
   45: *> \verbatim
   46: *>          TRANSR is CHARACTER*1
   47: *>          = 'N':  ARF is in Normal format;
   48: *>          = 'T':  ARF is in Transpose format.
   49: *> \endverbatim
   50: *>
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  A is upper triangular;
   55: *>          = 'L':  A is lower triangular.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrices ARF and A. N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] ARF
   65: *> \verbatim
   66: *>          ARF is DOUBLE PRECISION array, dimension (N*(N+1)/2).
   67: *>          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
   68: *>          matrix A in RFP format. See the "Notes" below for more
   69: *>          details.
   70: *> \endverbatim
   71: *>
   72: *> \param[out] A
   73: *> \verbatim
   74: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   75: *>          On exit, the triangular matrix A.  If UPLO = 'U', the
   76: *>          leading N-by-N upper triangular part of the array A contains
   77: *>          the upper triangular matrix, and the strictly lower
   78: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   79: *>          leading N-by-N lower triangular part of the array A contains
   80: *>          the lower triangular matrix, and the strictly upper
   81: *>          triangular part of A is not referenced.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] LDA
   85: *> \verbatim
   86: *>          LDA is INTEGER
   87: *>          The leading dimension of the array A.  LDA >= max(1,N).
   88: *> \endverbatim
   89: *>
   90: *> \param[out] INFO
   91: *> \verbatim
   92: *>          INFO is INTEGER
   93: *>          = 0:  successful exit
   94: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   95: *> \endverbatim
   96: *
   97: *  Authors:
   98: *  ========
   99: *
  100: *> \author Univ. of Tennessee 
  101: *> \author Univ. of California Berkeley 
  102: *> \author Univ. of Colorado Denver 
  103: *> \author NAG Ltd. 
  104: *
  105: *> \date September 2012
  106: *
  107: *> \ingroup doubleOTHERcomputational
  108: *
  109: *> \par Further Details:
  110: *  =====================
  111: *>
  112: *> \verbatim
  113: *>
  114: *>  We first consider Rectangular Full Packed (RFP) Format when N is
  115: *>  even. We give an example where N = 6.
  116: *>
  117: *>      AP is Upper             AP is Lower
  118: *>
  119: *>   00 01 02 03 04 05       00
  120: *>      11 12 13 14 15       10 11
  121: *>         22 23 24 25       20 21 22
  122: *>            33 34 35       30 31 32 33
  123: *>               44 45       40 41 42 43 44
  124: *>                  55       50 51 52 53 54 55
  125: *>
  126: *>
  127: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  128: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  129: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  130: *>  the transpose of the first three columns of AP upper.
  131: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  132: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  133: *>  the transpose of the last three columns of AP lower.
  134: *>  This covers the case N even and TRANSR = 'N'.
  135: *>
  136: *>         RFP A                   RFP A
  137: *>
  138: *>        03 04 05                33 43 53
  139: *>        13 14 15                00 44 54
  140: *>        23 24 25                10 11 55
  141: *>        33 34 35                20 21 22
  142: *>        00 44 45                30 31 32
  143: *>        01 11 55                40 41 42
  144: *>        02 12 22                50 51 52
  145: *>
  146: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  147: *>  transpose of RFP A above. One therefore gets:
  148: *>
  149: *>
  150: *>           RFP A                   RFP A
  151: *>
  152: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  153: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  154: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  155: *>
  156: *>
  157: *>  We then consider Rectangular Full Packed (RFP) Format when N is
  158: *>  odd. We give an example where N = 5.
  159: *>
  160: *>     AP is Upper                 AP is Lower
  161: *>
  162: *>   00 01 02 03 04              00
  163: *>      11 12 13 14              10 11
  164: *>         22 23 24              20 21 22
  165: *>            33 34              30 31 32 33
  166: *>               44              40 41 42 43 44
  167: *>
  168: *>
  169: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  170: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  171: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  172: *>  the transpose of the first two columns of AP upper.
  173: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  174: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  175: *>  the transpose of the last two columns of AP lower.
  176: *>  This covers the case N odd and TRANSR = 'N'.
  177: *>
  178: *>         RFP A                   RFP A
  179: *>
  180: *>        02 03 04                00 33 43
  181: *>        12 13 14                10 11 44
  182: *>        22 23 24                20 21 22
  183: *>        00 33 34                30 31 32
  184: *>        01 11 44                40 41 42
  185: *>
  186: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  187: *>  transpose of RFP A above. One therefore gets:
  188: *>
  189: *>           RFP A                   RFP A
  190: *>
  191: *>     02 12 22 00 01             00 10 20 30 40 50
  192: *>     03 13 23 33 11             33 11 21 31 41 51
  193: *>     04 14 24 34 44             43 44 22 32 42 52
  194: *> \endverbatim
  195: *
  196: *  =====================================================================
  197:       SUBROUTINE DTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  198: *
  199: *  -- LAPACK computational routine (version 3.4.2) --
  200: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  201: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  202: *     September 2012
  203: *
  204: *     .. Scalar Arguments ..
  205:       CHARACTER          TRANSR, UPLO
  206:       INTEGER            INFO, N, LDA
  207: *     ..
  208: *     .. Array Arguments ..
  209:       DOUBLE PRECISION   A( 0: LDA-1, 0: * ), ARF( 0: * )
  210: *     ..
  211: *
  212: *  =====================================================================
  213: *
  214: *     ..
  215: *     .. Local Scalars ..
  216:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  217:       INTEGER            N1, N2, K, NT, NX2, NP1X2
  218:       INTEGER            I, J, L, IJ
  219: *     ..
  220: *     .. External Functions ..
  221:       LOGICAL            LSAME
  222:       EXTERNAL           LSAME
  223: *     ..
  224: *     .. External Subroutines ..
  225:       EXTERNAL           XERBLA
  226: *     ..
  227: *     .. Intrinsic Functions ..
  228:       INTRINSIC          MAX, MOD
  229: *     ..
  230: *     .. Executable Statements ..
  231: *
  232: *     Test the input parameters.
  233: *
  234:       INFO = 0
  235:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  236:       LOWER = LSAME( UPLO, 'L' )
  237:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  238:          INFO = -1
  239:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  240:          INFO = -2
  241:       ELSE IF( N.LT.0 ) THEN
  242:          INFO = -3
  243:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  244:          INFO = -6
  245:       END IF
  246:       IF( INFO.NE.0 ) THEN
  247:          CALL XERBLA( 'DTFTTR', -INFO )
  248:          RETURN
  249:       END IF
  250: *
  251: *     Quick return if possible
  252: *
  253:       IF( N.LE.1 ) THEN
  254:          IF( N.EQ.1 ) THEN
  255:             A( 0, 0 ) = ARF( 0 )
  256:          END IF
  257:          RETURN
  258:       END IF
  259: *
  260: *     Size of array ARF(0:nt-1)
  261: *
  262:       NT = N*( N+1 ) / 2
  263: *
  264: *     set N1 and N2 depending on LOWER: for N even N1=N2=K
  265: *
  266:       IF( LOWER ) THEN
  267:          N2 = N / 2
  268:          N1 = N - N2
  269:       ELSE
  270:          N1 = N / 2
  271:          N2 = N - N1
  272:       END IF
  273: *
  274: *     If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  275: *     If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  276: *     N--by--(N+1)/2.
  277: *
  278:       IF( MOD( N, 2 ).EQ.0 ) THEN
  279:          K = N / 2
  280:          NISODD = .FALSE.
  281:          IF( .NOT.LOWER )
  282:      $      NP1X2 = N + N + 2
  283:       ELSE
  284:          NISODD = .TRUE.
  285:          IF( .NOT.LOWER )
  286:      $      NX2 = N + N
  287:       END IF
  288: *
  289:       IF( NISODD ) THEN
  290: *
  291: *        N is odd
  292: *
  293:          IF( NORMALTRANSR ) THEN
  294: *
  295: *           N is odd and TRANSR = 'N'
  296: *
  297:             IF( LOWER ) THEN
  298: *
  299: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  300: *
  301:                IJ = 0
  302:                DO J = 0, N2
  303:                   DO I = N1, N2 + J
  304:                      A( N2+J, I ) = ARF( IJ )
  305:                      IJ = IJ + 1
  306:                   END DO
  307:                   DO I = J, N - 1
  308:                      A( I, J ) = ARF( IJ )
  309:                      IJ = IJ + 1
  310:                   END DO
  311:                END DO
  312: *
  313:             ELSE
  314: *
  315: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  316: *
  317:                IJ = NT - N
  318:                DO J = N - 1, N1, -1
  319:                   DO I = 0, J
  320:                      A( I, J ) = ARF( IJ )
  321:                      IJ = IJ + 1
  322:                   END DO
  323:                   DO L = J - N1, N1 - 1
  324:                      A( J-N1, L ) = ARF( IJ )
  325:                      IJ = IJ + 1
  326:                   END DO
  327:                   IJ = IJ - NX2
  328:                END DO
  329: *
  330:             END IF
  331: *
  332:          ELSE
  333: *
  334: *           N is odd and TRANSR = 'T'
  335: *
  336:             IF( LOWER ) THEN
  337: *
  338: *              N is odd, TRANSR = 'T', and UPLO = 'L'
  339: *
  340:                IJ = 0
  341:                DO J = 0, N2 - 1
  342:                   DO I = 0, J
  343:                      A( J, I ) = ARF( IJ )
  344:                      IJ = IJ + 1
  345:                   END DO
  346:                   DO I = N1 + J, N - 1
  347:                      A( I, N1+J ) = ARF( IJ )
  348:                      IJ = IJ + 1
  349:                   END DO
  350:                END DO
  351:                DO J = N2, N - 1
  352:                   DO I = 0, N1 - 1
  353:                      A( J, I ) = ARF( IJ )
  354:                      IJ = IJ + 1
  355:                   END DO
  356:                END DO
  357: *
  358:             ELSE
  359: *
  360: *              N is odd, TRANSR = 'T', and UPLO = 'U'
  361: *
  362:                IJ = 0
  363:                DO J = 0, N1
  364:                   DO I = N1, N - 1
  365:                      A( J, I ) = ARF( IJ )
  366:                      IJ = IJ + 1
  367:                   END DO
  368:                END DO
  369:                DO J = 0, N1 - 1
  370:                   DO I = 0, J
  371:                      A( I, J ) = ARF( IJ )
  372:                      IJ = IJ + 1
  373:                   END DO
  374:                   DO L = N2 + J, N - 1
  375:                      A( N2+J, L ) = ARF( IJ )
  376:                      IJ = IJ + 1
  377:                   END DO
  378:                END DO
  379: *
  380:             END IF
  381: *
  382:          END IF
  383: *
  384:       ELSE
  385: *
  386: *        N is even
  387: *
  388:          IF( NORMALTRANSR ) THEN
  389: *
  390: *           N is even and TRANSR = 'N'
  391: *
  392:             IF( LOWER ) THEN
  393: *
  394: *              N is even, TRANSR = 'N', and UPLO = 'L'
  395: *
  396:                IJ = 0
  397:                DO J = 0, K - 1
  398:                   DO I = K, K + J
  399:                      A( K+J, I ) = ARF( IJ )
  400:                      IJ = IJ + 1
  401:                   END DO
  402:                   DO I = J, N - 1
  403:                      A( I, J ) = ARF( IJ )
  404:                      IJ = IJ + 1
  405:                   END DO
  406:                END DO
  407: *
  408:             ELSE
  409: *
  410: *              N is even, TRANSR = 'N', and UPLO = 'U'
  411: *
  412:                IJ = NT - N - 1
  413:                DO J = N - 1, K, -1
  414:                   DO I = 0, J
  415:                      A( I, J ) = ARF( IJ )
  416:                      IJ = IJ + 1
  417:                   END DO
  418:                   DO L = J - K, K - 1
  419:                      A( J-K, L ) = ARF( IJ )
  420:                      IJ = IJ + 1
  421:                   END DO
  422:                   IJ = IJ - NP1X2
  423:                END DO
  424: *
  425:             END IF
  426: *
  427:          ELSE
  428: *
  429: *           N is even and TRANSR = 'T'
  430: *
  431:             IF( LOWER ) THEN
  432: *
  433: *              N is even, TRANSR = 'T', and UPLO = 'L'
  434: *
  435:                IJ = 0
  436:                J = K
  437:                DO I = K, N - 1
  438:                   A( I, J ) = ARF( IJ )
  439:                   IJ = IJ + 1
  440:                END DO
  441:                DO J = 0, K - 2
  442:                   DO I = 0, J
  443:                      A( J, I ) = ARF( IJ )
  444:                      IJ = IJ + 1
  445:                   END DO
  446:                   DO I = K + 1 + J, N - 1
  447:                      A( I, K+1+J ) = ARF( IJ )
  448:                      IJ = IJ + 1
  449:                   END DO
  450:                END DO
  451:                DO J = K - 1, N - 1
  452:                   DO I = 0, K - 1
  453:                      A( J, I ) = ARF( IJ )
  454:                      IJ = IJ + 1
  455:                   END DO
  456:                END DO
  457: *
  458:             ELSE
  459: *
  460: *              N is even, TRANSR = 'T', and UPLO = 'U'
  461: *
  462:                IJ = 0
  463:                DO J = 0, K
  464:                   DO I = K, N - 1
  465:                      A( J, I ) = ARF( IJ )
  466:                      IJ = IJ + 1
  467:                   END DO
  468:                END DO
  469:                DO J = 0, K - 2
  470:                   DO I = 0, J
  471:                      A( I, J ) = ARF( IJ )
  472:                      IJ = IJ + 1
  473:                   END DO
  474:                   DO L = K + 1 + J, N - 1
  475:                      A( K+1+J, L ) = ARF( IJ )
  476:                      IJ = IJ + 1
  477:                   END DO
  478:                END DO
  479: *              Note that here, on exit of the loop, J = K-1
  480:                DO I = 0, J
  481:                   A( I, J ) = ARF( IJ )
  482:                   IJ = IJ + 1
  483:                END DO
  484: *
  485:             END IF
  486: *
  487:          END IF
  488: *
  489:       END IF
  490: *
  491:       RETURN
  492: *
  493: *     End of DTFTTR
  494: *
  495:       END

CVSweb interface <joel.bertrand@systella.fr>