File:  [local] / rpl / lapack / lapack / dtfttp.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:27 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2.2)                                    --
    4: *
    5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
    6: *  -- June 2010                                                       --
    7: *
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *
   11: *     ..
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          TRANSR, UPLO
   14:       INTEGER            INFO, N
   15: *     ..
   16: *     .. Array Arguments ..
   17:       DOUBLE PRECISION   AP( 0: * ), ARF( 0: * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DTFTTP copies a triangular matrix A from rectangular full packed
   24: *  format (TF) to standard packed format (TP).
   25: *
   26: *  Arguments
   27: *  =========
   28: *
   29: *  TRANSR  (input) CHARACTER
   30: *          = 'N':  ARF is in Normal format;
   31: *          = 'T':  ARF is in Transpose format;
   32: *
   33: *  UPLO    (input) CHARACTER
   34: *          = 'U':  A is upper triangular;
   35: *          = 'L':  A is lower triangular.
   36: *
   37: *  N       (input) INTEGER
   38: *          The order of the matrix A. N >= 0.
   39: *
   40: *  ARF     (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
   41: *          On entry, the upper or lower triangular matrix A stored in
   42: *          RFP format. For a further discussion see Notes below.
   43: *
   44: *  AP      (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
   45: *          On exit, the upper or lower triangular matrix A, packed
   46: *          columnwise in a linear array. The j-th column of A is stored
   47: *          in the array AP as follows:
   48: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   49: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   50: *
   51: *  INFO    (output) INTEGER
   52: *          = 0:  successful exit
   53: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   54: *
   55: *  Further Details
   56: *  ===============
   57: *
   58: *  We first consider Rectangular Full Packed (RFP) Format when N is
   59: *  even. We give an example where N = 6.
   60: *
   61: *      AP is Upper             AP is Lower
   62: *
   63: *   00 01 02 03 04 05       00
   64: *      11 12 13 14 15       10 11
   65: *         22 23 24 25       20 21 22
   66: *            33 34 35       30 31 32 33
   67: *               44 45       40 41 42 43 44
   68: *                  55       50 51 52 53 54 55
   69: *
   70: *
   71: *  Let TRANSR = 'N'. RFP holds AP as follows:
   72: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
   73: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
   74: *  the transpose of the first three columns of AP upper.
   75: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
   76: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
   77: *  the transpose of the last three columns of AP lower.
   78: *  This covers the case N even and TRANSR = 'N'.
   79: *
   80: *         RFP A                   RFP A
   81: *
   82: *        03 04 05                33 43 53
   83: *        13 14 15                00 44 54
   84: *        23 24 25                10 11 55
   85: *        33 34 35                20 21 22
   86: *        00 44 45                30 31 32
   87: *        01 11 55                40 41 42
   88: *        02 12 22                50 51 52
   89: *
   90: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
   91: *  transpose of RFP A above. One therefore gets:
   92: *
   93: *
   94: *           RFP A                   RFP A
   95: *
   96: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
   97: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
   98: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
   99: *
  100: *
  101: *  We then consider Rectangular Full Packed (RFP) Format when N is
  102: *  odd. We give an example where N = 5.
  103: *
  104: *     AP is Upper                 AP is Lower
  105: *
  106: *   00 01 02 03 04              00
  107: *      11 12 13 14              10 11
  108: *         22 23 24              20 21 22
  109: *            33 34              30 31 32 33
  110: *               44              40 41 42 43 44
  111: *
  112: *
  113: *  Let TRANSR = 'N'. RFP holds AP as follows:
  114: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  115: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  116: *  the transpose of the first two columns of AP upper.
  117: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  118: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  119: *  the transpose of the last two columns of AP lower.
  120: *  This covers the case N odd and TRANSR = 'N'.
  121: *
  122: *         RFP A                   RFP A
  123: *
  124: *        02 03 04                00 33 43
  125: *        12 13 14                10 11 44
  126: *        22 23 24                20 21 22
  127: *        00 33 34                30 31 32
  128: *        01 11 44                40 41 42
  129: *
  130: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  131: *  transpose of RFP A above. One therefore gets:
  132: *
  133: *           RFP A                   RFP A
  134: *
  135: *     02 12 22 00 01             00 10 20 30 40 50
  136: *     03 13 23 33 11             33 11 21 31 41 51
  137: *     04 14 24 34 44             43 44 22 32 42 52
  138: *
  139: *  =====================================================================
  140: *
  141: *     .. Parameters ..
  142: *     ..
  143: *     .. Local Scalars ..
  144:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  145:       INTEGER            N1, N2, K, NT
  146:       INTEGER            I, J, IJ
  147:       INTEGER            IJP, JP, LDA, JS
  148: *     ..
  149: *     .. External Functions ..
  150:       LOGICAL            LSAME
  151:       EXTERNAL           LSAME
  152: *     ..
  153: *     .. External Subroutines ..
  154:       EXTERNAL           XERBLA
  155: *     ..
  156: *     .. Executable Statements ..
  157: *
  158: *     Test the input parameters.
  159: *
  160:       INFO = 0
  161:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  162:       LOWER = LSAME( UPLO, 'L' )
  163:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  164:          INFO = -1
  165:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  166:          INFO = -2
  167:       ELSE IF( N.LT.0 ) THEN
  168:          INFO = -3
  169:       END IF
  170:       IF( INFO.NE.0 ) THEN
  171:          CALL XERBLA( 'DTFTTP', -INFO )
  172:          RETURN
  173:       END IF
  174: *
  175: *     Quick return if possible
  176: *
  177:       IF( N.EQ.0 )
  178:      +   RETURN
  179: *
  180:       IF( N.EQ.1 ) THEN
  181:          IF( NORMALTRANSR ) THEN
  182:             AP( 0 ) = ARF( 0 )
  183:          ELSE
  184:             AP( 0 ) = ARF( 0 )
  185:          END IF
  186:          RETURN
  187:       END IF
  188: *
  189: *     Size of array ARF(0:NT-1)
  190: *
  191:       NT = N*( N+1 ) / 2
  192: *
  193: *     Set N1 and N2 depending on LOWER
  194: *
  195:       IF( LOWER ) THEN
  196:          N2 = N / 2
  197:          N1 = N - N2
  198:       ELSE
  199:          N1 = N / 2
  200:          N2 = N - N1
  201:       END IF
  202: *
  203: *     If N is odd, set NISODD = .TRUE.
  204: *     If N is even, set K = N/2 and NISODD = .FALSE.
  205: *
  206: *     set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
  207: *     where noe = 0 if n is even, noe = 1 if n is odd
  208: *
  209:       IF( MOD( N, 2 ).EQ.0 ) THEN
  210:          K = N / 2
  211:          NISODD = .FALSE.
  212:          LDA = N + 1
  213:       ELSE
  214:          NISODD = .TRUE.
  215:          LDA = N
  216:       END IF
  217: *
  218: *     ARF^C has lda rows and n+1-noe cols
  219: *
  220:       IF( .NOT.NORMALTRANSR )
  221:      +   LDA = ( N+1 ) / 2
  222: *
  223: *     start execution: there are eight cases
  224: *
  225:       IF( NISODD ) THEN
  226: *
  227: *        N is odd
  228: *
  229:          IF( NORMALTRANSR ) THEN
  230: *
  231: *           N is odd and TRANSR = 'N'
  232: *
  233:             IF( LOWER ) THEN
  234: *
  235: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  236: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  237: *             T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
  238: *
  239:                IJP = 0
  240:                JP = 0
  241:                DO J = 0, N2
  242:                   DO I = J, N - 1
  243:                      IJ = I + JP
  244:                      AP( IJP ) = ARF( IJ )
  245:                      IJP = IJP + 1
  246:                   END DO
  247:                   JP = JP + LDA
  248:                END DO
  249:                DO I = 0, N2 - 1
  250:                   DO J = 1 + I, N2
  251:                      IJ = I + J*LDA
  252:                      AP( IJP ) = ARF( IJ )
  253:                      IJP = IJP + 1
  254:                   END DO
  255:                END DO
  256: *
  257:             ELSE
  258: *
  259: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  260: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  261: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  262: *
  263:                IJP = 0
  264:                DO J = 0, N1 - 1
  265:                   IJ = N2 + J
  266:                   DO I = 0, J
  267:                      AP( IJP ) = ARF( IJ )
  268:                      IJP = IJP + 1
  269:                      IJ = IJ + LDA
  270:                   END DO
  271:                END DO
  272:                JS = 0
  273:                DO J = N1, N - 1
  274:                   IJ = JS
  275:                   DO IJ = JS, JS + J
  276:                      AP( IJP ) = ARF( IJ )
  277:                      IJP = IJP + 1
  278:                   END DO
  279:                   JS = JS + LDA
  280:                END DO
  281: *
  282:             END IF
  283: *
  284:          ELSE
  285: *
  286: *           N is odd and TRANSR = 'T'
  287: *
  288:             IF( LOWER ) THEN
  289: *
  290: *              SRPA for LOWER, TRANSPOSE and N is odd
  291: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  292: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  293: *
  294:                IJP = 0
  295:                DO I = 0, N2
  296:                   DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
  297:                      AP( IJP ) = ARF( IJ )
  298:                      IJP = IJP + 1
  299:                   END DO
  300:                END DO
  301:                JS = 1
  302:                DO J = 0, N2 - 1
  303:                   DO IJ = JS, JS + N2 - J - 1
  304:                      AP( IJP ) = ARF( IJ )
  305:                      IJP = IJP + 1
  306:                   END DO
  307:                   JS = JS + LDA + 1
  308:                END DO
  309: *
  310:             ELSE
  311: *
  312: *              SRPA for UPPER, TRANSPOSE and N is odd
  313: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  314: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  315: *
  316:                IJP = 0
  317:                JS = N2*LDA
  318:                DO J = 0, N1 - 1
  319:                   DO IJ = JS, JS + J
  320:                      AP( IJP ) = ARF( IJ )
  321:                      IJP = IJP + 1
  322:                   END DO
  323:                   JS = JS + LDA
  324:                END DO
  325:                DO I = 0, N1
  326:                   DO IJ = I, I + ( N1+I )*LDA, LDA
  327:                      AP( IJP ) = ARF( IJ )
  328:                      IJP = IJP + 1
  329:                   END DO
  330:                END DO
  331: *
  332:             END IF
  333: *
  334:          END IF
  335: *
  336:       ELSE
  337: *
  338: *        N is even
  339: *
  340:          IF( NORMALTRANSR ) THEN
  341: *
  342: *           N is even and TRANSR = 'N'
  343: *
  344:             IF( LOWER ) THEN
  345: *
  346: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  347: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  348: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  349: *
  350:                IJP = 0
  351:                JP = 0
  352:                DO J = 0, K - 1
  353:                   DO I = J, N - 1
  354:                      IJ = 1 + I + JP
  355:                      AP( IJP ) = ARF( IJ )
  356:                      IJP = IJP + 1
  357:                   END DO
  358:                   JP = JP + LDA
  359:                END DO
  360:                DO I = 0, K - 1
  361:                   DO J = I, K - 1
  362:                      IJ = I + J*LDA
  363:                      AP( IJP ) = ARF( IJ )
  364:                      IJP = IJP + 1
  365:                   END DO
  366:                END DO
  367: *
  368:             ELSE
  369: *
  370: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  371: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  372: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  373: *
  374:                IJP = 0
  375:                DO J = 0, K - 1
  376:                   IJ = K + 1 + J
  377:                   DO I = 0, J
  378:                      AP( IJP ) = ARF( IJ )
  379:                      IJP = IJP + 1
  380:                      IJ = IJ + LDA
  381:                   END DO
  382:                END DO
  383:                JS = 0
  384:                DO J = K, N - 1
  385:                   IJ = JS
  386:                   DO IJ = JS, JS + J
  387:                      AP( IJP ) = ARF( IJ )
  388:                      IJP = IJP + 1
  389:                   END DO
  390:                   JS = JS + LDA
  391:                END DO
  392: *
  393:             END IF
  394: *
  395:          ELSE
  396: *
  397: *           N is even and TRANSR = 'T'
  398: *
  399:             IF( LOWER ) THEN
  400: *
  401: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  402: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  403: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  404: *
  405:                IJP = 0
  406:                DO I = 0, K - 1
  407:                   DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
  408:                      AP( IJP ) = ARF( IJ )
  409:                      IJP = IJP + 1
  410:                   END DO
  411:                END DO
  412:                JS = 0
  413:                DO J = 0, K - 1
  414:                   DO IJ = JS, JS + K - J - 1
  415:                      AP( IJP ) = ARF( IJ )
  416:                      IJP = IJP + 1
  417:                   END DO
  418:                   JS = JS + LDA + 1
  419:                END DO
  420: *
  421:             ELSE
  422: *
  423: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  424: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  425: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  426: *
  427:                IJP = 0
  428:                JS = ( K+1 )*LDA
  429:                DO J = 0, K - 1
  430:                   DO IJ = JS, JS + J
  431:                      AP( IJP ) = ARF( IJ )
  432:                      IJP = IJP + 1
  433:                   END DO
  434:                   JS = JS + LDA
  435:                END DO
  436:                DO I = 0, K - 1
  437:                   DO IJ = I, I + ( K+I )*LDA, LDA
  438:                      AP( IJP ) = ARF( IJ )
  439:                      IJP = IJP + 1
  440:                   END DO
  441:                END DO
  442: *
  443:             END IF
  444: *
  445:          END IF
  446: *
  447:       END IF
  448: *
  449:       RETURN
  450: *
  451: *     End of DTFTTP
  452: *
  453:       END

CVSweb interface <joel.bertrand@systella.fr>