File:  [local] / rpl / lapack / lapack / dtfttp.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:12 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTFTTP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtfttp.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtfttp.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtfttp.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   AP( 0: * ), ARF( 0: * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DTFTTP copies a triangular matrix A from rectangular full packed
   38: *> format (TF) to standard packed format (TP).
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] TRANSR
   45: *> \verbatim
   46: *>          TRANSR is CHARACTER*1
   47: *>          = 'N':  ARF is in Normal format;
   48: *>          = 'T':  ARF is in Transpose format;
   49: *> \endverbatim
   50: *>
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  A is upper triangular;
   55: *>          = 'L':  A is lower triangular.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A. N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] ARF
   65: *> \verbatim
   66: *>          ARF is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
   67: *>          On entry, the upper or lower triangular matrix A stored in
   68: *>          RFP format. For a further discussion see Notes below.
   69: *> \endverbatim
   70: *>
   71: *> \param[out] AP
   72: *> \verbatim
   73: *>          AP is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
   74: *>          On exit, the upper or lower triangular matrix A, packed
   75: *>          columnwise in a linear array. The j-th column of A is stored
   76: *>          in the array AP as follows:
   77: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   78: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   79: *> \endverbatim
   80: *>
   81: *> \param[out] INFO
   82: *> \verbatim
   83: *>          INFO is INTEGER
   84: *>          = 0:  successful exit
   85: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   86: *> \endverbatim
   87: *
   88: *  Authors:
   89: *  ========
   90: *
   91: *> \author Univ. of Tennessee
   92: *> \author Univ. of California Berkeley
   93: *> \author Univ. of Colorado Denver
   94: *> \author NAG Ltd.
   95: *
   96: *> \ingroup doubleOTHERcomputational
   97: *
   98: *> \par Further Details:
   99: *  =====================
  100: *>
  101: *> \verbatim
  102: *>
  103: *>  We first consider Rectangular Full Packed (RFP) Format when N is
  104: *>  even. We give an example where N = 6.
  105: *>
  106: *>      AP is Upper             AP is Lower
  107: *>
  108: *>   00 01 02 03 04 05       00
  109: *>      11 12 13 14 15       10 11
  110: *>         22 23 24 25       20 21 22
  111: *>            33 34 35       30 31 32 33
  112: *>               44 45       40 41 42 43 44
  113: *>                  55       50 51 52 53 54 55
  114: *>
  115: *>
  116: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  117: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  118: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  119: *>  the transpose of the first three columns of AP upper.
  120: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  121: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  122: *>  the transpose of the last three columns of AP lower.
  123: *>  This covers the case N even and TRANSR = 'N'.
  124: *>
  125: *>         RFP A                   RFP A
  126: *>
  127: *>        03 04 05                33 43 53
  128: *>        13 14 15                00 44 54
  129: *>        23 24 25                10 11 55
  130: *>        33 34 35                20 21 22
  131: *>        00 44 45                30 31 32
  132: *>        01 11 55                40 41 42
  133: *>        02 12 22                50 51 52
  134: *>
  135: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  136: *>  transpose of RFP A above. One therefore gets:
  137: *>
  138: *>
  139: *>           RFP A                   RFP A
  140: *>
  141: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  142: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  143: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  144: *>
  145: *>
  146: *>  We then consider Rectangular Full Packed (RFP) Format when N is
  147: *>  odd. We give an example where N = 5.
  148: *>
  149: *>     AP is Upper                 AP is Lower
  150: *>
  151: *>   00 01 02 03 04              00
  152: *>      11 12 13 14              10 11
  153: *>         22 23 24              20 21 22
  154: *>            33 34              30 31 32 33
  155: *>               44              40 41 42 43 44
  156: *>
  157: *>
  158: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  159: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  160: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  161: *>  the transpose of the first two columns of AP upper.
  162: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  163: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  164: *>  the transpose of the last two columns of AP lower.
  165: *>  This covers the case N odd and TRANSR = 'N'.
  166: *>
  167: *>         RFP A                   RFP A
  168: *>
  169: *>        02 03 04                00 33 43
  170: *>        12 13 14                10 11 44
  171: *>        22 23 24                20 21 22
  172: *>        00 33 34                30 31 32
  173: *>        01 11 44                40 41 42
  174: *>
  175: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  176: *>  transpose of RFP A above. One therefore gets:
  177: *>
  178: *>           RFP A                   RFP A
  179: *>
  180: *>     02 12 22 00 01             00 10 20 30 40 50
  181: *>     03 13 23 33 11             33 11 21 31 41 51
  182: *>     04 14 24 34 44             43 44 22 32 42 52
  183: *> \endverbatim
  184: *>
  185: *  =====================================================================
  186:       SUBROUTINE DTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
  187: *
  188: *  -- LAPACK computational routine --
  189: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  191: *
  192: *     .. Scalar Arguments ..
  193:       CHARACTER          TRANSR, UPLO
  194:       INTEGER            INFO, N
  195: *     ..
  196: *     .. Array Arguments ..
  197:       DOUBLE PRECISION   AP( 0: * ), ARF( 0: * )
  198: *     ..
  199: *
  200: *  =====================================================================
  201: *
  202: *     .. Parameters ..
  203: *     ..
  204: *     .. Local Scalars ..
  205:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  206:       INTEGER            N1, N2, K, NT
  207:       INTEGER            I, J, IJ
  208:       INTEGER            IJP, JP, LDA, JS
  209: *     ..
  210: *     .. External Functions ..
  211:       LOGICAL            LSAME
  212:       EXTERNAL           LSAME
  213: *     ..
  214: *     .. External Subroutines ..
  215:       EXTERNAL           XERBLA
  216: *     ..
  217: *     .. Executable Statements ..
  218: *
  219: *     Test the input parameters.
  220: *
  221:       INFO = 0
  222:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  223:       LOWER = LSAME( UPLO, 'L' )
  224:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  225:          INFO = -1
  226:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  227:          INFO = -2
  228:       ELSE IF( N.LT.0 ) THEN
  229:          INFO = -3
  230:       END IF
  231:       IF( INFO.NE.0 ) THEN
  232:          CALL XERBLA( 'DTFTTP', -INFO )
  233:          RETURN
  234:       END IF
  235: *
  236: *     Quick return if possible
  237: *
  238:       IF( N.EQ.0 )
  239:      $   RETURN
  240: *
  241:       IF( N.EQ.1 ) THEN
  242:          IF( NORMALTRANSR ) THEN
  243:             AP( 0 ) = ARF( 0 )
  244:          ELSE
  245:             AP( 0 ) = ARF( 0 )
  246:          END IF
  247:          RETURN
  248:       END IF
  249: *
  250: *     Size of array ARF(0:NT-1)
  251: *
  252:       NT = N*( N+1 ) / 2
  253: *
  254: *     Set N1 and N2 depending on LOWER
  255: *
  256:       IF( LOWER ) THEN
  257:          N2 = N / 2
  258:          N1 = N - N2
  259:       ELSE
  260:          N1 = N / 2
  261:          N2 = N - N1
  262:       END IF
  263: *
  264: *     If N is odd, set NISODD = .TRUE.
  265: *     If N is even, set K = N/2 and NISODD = .FALSE.
  266: *
  267: *     set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
  268: *     where noe = 0 if n is even, noe = 1 if n is odd
  269: *
  270:       IF( MOD( N, 2 ).EQ.0 ) THEN
  271:          K = N / 2
  272:          NISODD = .FALSE.
  273:          LDA = N + 1
  274:       ELSE
  275:          NISODD = .TRUE.
  276:          LDA = N
  277:       END IF
  278: *
  279: *     ARF^C has lda rows and n+1-noe cols
  280: *
  281:       IF( .NOT.NORMALTRANSR )
  282:      $   LDA = ( N+1 ) / 2
  283: *
  284: *     start execution: there are eight cases
  285: *
  286:       IF( NISODD ) THEN
  287: *
  288: *        N is odd
  289: *
  290:          IF( NORMALTRANSR ) THEN
  291: *
  292: *           N is odd and TRANSR = 'N'
  293: *
  294:             IF( LOWER ) THEN
  295: *
  296: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  297: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  298: *             T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
  299: *
  300:                IJP = 0
  301:                JP = 0
  302:                DO J = 0, N2
  303:                   DO I = J, N - 1
  304:                      IJ = I + JP
  305:                      AP( IJP ) = ARF( IJ )
  306:                      IJP = IJP + 1
  307:                   END DO
  308:                   JP = JP + LDA
  309:                END DO
  310:                DO I = 0, N2 - 1
  311:                   DO J = 1 + I, N2
  312:                      IJ = I + J*LDA
  313:                      AP( IJP ) = ARF( IJ )
  314:                      IJP = IJP + 1
  315:                   END DO
  316:                END DO
  317: *
  318:             ELSE
  319: *
  320: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  321: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  322: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  323: *
  324:                IJP = 0
  325:                DO J = 0, N1 - 1
  326:                   IJ = N2 + J
  327:                   DO I = 0, J
  328:                      AP( IJP ) = ARF( IJ )
  329:                      IJP = IJP + 1
  330:                      IJ = IJ + LDA
  331:                   END DO
  332:                END DO
  333:                JS = 0
  334:                DO J = N1, N - 1
  335:                   IJ = JS
  336:                   DO IJ = JS, JS + J
  337:                      AP( IJP ) = ARF( IJ )
  338:                      IJP = IJP + 1
  339:                   END DO
  340:                   JS = JS + LDA
  341:                END DO
  342: *
  343:             END IF
  344: *
  345:          ELSE
  346: *
  347: *           N is odd and TRANSR = 'T'
  348: *
  349:             IF( LOWER ) THEN
  350: *
  351: *              SRPA for LOWER, TRANSPOSE and N is odd
  352: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  353: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  354: *
  355:                IJP = 0
  356:                DO I = 0, N2
  357:                   DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
  358:                      AP( IJP ) = ARF( IJ )
  359:                      IJP = IJP + 1
  360:                   END DO
  361:                END DO
  362:                JS = 1
  363:                DO J = 0, N2 - 1
  364:                   DO IJ = JS, JS + N2 - J - 1
  365:                      AP( IJP ) = ARF( IJ )
  366:                      IJP = IJP + 1
  367:                   END DO
  368:                   JS = JS + LDA + 1
  369:                END DO
  370: *
  371:             ELSE
  372: *
  373: *              SRPA for UPPER, TRANSPOSE and N is odd
  374: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  375: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  376: *
  377:                IJP = 0
  378:                JS = N2*LDA
  379:                DO J = 0, N1 - 1
  380:                   DO IJ = JS, JS + J
  381:                      AP( IJP ) = ARF( IJ )
  382:                      IJP = IJP + 1
  383:                   END DO
  384:                   JS = JS + LDA
  385:                END DO
  386:                DO I = 0, N1
  387:                   DO IJ = I, I + ( N1+I )*LDA, LDA
  388:                      AP( IJP ) = ARF( IJ )
  389:                      IJP = IJP + 1
  390:                   END DO
  391:                END DO
  392: *
  393:             END IF
  394: *
  395:          END IF
  396: *
  397:       ELSE
  398: *
  399: *        N is even
  400: *
  401:          IF( NORMALTRANSR ) THEN
  402: *
  403: *           N is even and TRANSR = 'N'
  404: *
  405:             IF( LOWER ) THEN
  406: *
  407: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  408: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  409: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  410: *
  411:                IJP = 0
  412:                JP = 0
  413:                DO J = 0, K - 1
  414:                   DO I = J, N - 1
  415:                      IJ = 1 + I + JP
  416:                      AP( IJP ) = ARF( IJ )
  417:                      IJP = IJP + 1
  418:                   END DO
  419:                   JP = JP + LDA
  420:                END DO
  421:                DO I = 0, K - 1
  422:                   DO J = I, K - 1
  423:                      IJ = I + J*LDA
  424:                      AP( IJP ) = ARF( IJ )
  425:                      IJP = IJP + 1
  426:                   END DO
  427:                END DO
  428: *
  429:             ELSE
  430: *
  431: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  432: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  433: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  434: *
  435:                IJP = 0
  436:                DO J = 0, K - 1
  437:                   IJ = K + 1 + J
  438:                   DO I = 0, J
  439:                      AP( IJP ) = ARF( IJ )
  440:                      IJP = IJP + 1
  441:                      IJ = IJ + LDA
  442:                   END DO
  443:                END DO
  444:                JS = 0
  445:                DO J = K, N - 1
  446:                   IJ = JS
  447:                   DO IJ = JS, JS + J
  448:                      AP( IJP ) = ARF( IJ )
  449:                      IJP = IJP + 1
  450:                   END DO
  451:                   JS = JS + LDA
  452:                END DO
  453: *
  454:             END IF
  455: *
  456:          ELSE
  457: *
  458: *           N is even and TRANSR = 'T'
  459: *
  460:             IF( LOWER ) THEN
  461: *
  462: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  463: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  464: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  465: *
  466:                IJP = 0
  467:                DO I = 0, K - 1
  468:                   DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
  469:                      AP( IJP ) = ARF( IJ )
  470:                      IJP = IJP + 1
  471:                   END DO
  472:                END DO
  473:                JS = 0
  474:                DO J = 0, K - 1
  475:                   DO IJ = JS, JS + K - J - 1
  476:                      AP( IJP ) = ARF( IJ )
  477:                      IJP = IJP + 1
  478:                   END DO
  479:                   JS = JS + LDA + 1
  480:                END DO
  481: *
  482:             ELSE
  483: *
  484: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  485: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  486: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  487: *
  488:                IJP = 0
  489:                JS = ( K+1 )*LDA
  490:                DO J = 0, K - 1
  491:                   DO IJ = JS, JS + J
  492:                      AP( IJP ) = ARF( IJ )
  493:                      IJP = IJP + 1
  494:                   END DO
  495:                   JS = JS + LDA
  496:                END DO
  497:                DO I = 0, K - 1
  498:                   DO IJ = I, I + ( K+I )*LDA, LDA
  499:                      AP( IJP ) = ARF( IJ )
  500:                      IJP = IJP + 1
  501:                   END DO
  502:                END DO
  503: *
  504:             END IF
  505: *
  506:          END IF
  507: *
  508:       END IF
  509: *
  510:       RETURN
  511: *
  512: *     End of DTFTTP
  513: *
  514:       END

CVSweb interface <joel.bertrand@systella.fr>