File:  [local] / rpl / lapack / lapack / dtftri.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:12 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTFTRI
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTFTRI + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtftri.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtftri.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtftri.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO, DIAG
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( 0: * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DTFTRI computes the inverse of a triangular matrix A stored in RFP
   38: *> format.
   39: *>
   40: *> This is a Level 3 BLAS version of the algorithm.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] TRANSR
   47: *> \verbatim
   48: *>          TRANSR is CHARACTER*1
   49: *>          = 'N':  The Normal TRANSR of RFP A is stored;
   50: *>          = 'T':  The Transpose TRANSR of RFP A is stored.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          = 'U':  A is upper triangular;
   57: *>          = 'L':  A is lower triangular.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] DIAG
   61: *> \verbatim
   62: *>          DIAG is CHARACTER*1
   63: *>          = 'N':  A is non-unit triangular;
   64: *>          = 'U':  A is unit triangular.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The order of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in,out] A
   74: *> \verbatim
   75: *>          A is DOUBLE PRECISION array, dimension (0:nt-1);
   76: *>          nt=N*(N+1)/2. On entry, the triangular factor of a Hermitian
   77: *>          Positive Definite matrix A in RFP format. RFP format is
   78: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   79: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   80: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
   81: *>          the transpose of RFP A as defined when
   82: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   83: *>          follows: If UPLO = 'U' the RFP A contains the nt elements of
   84: *>          upper packed A; If UPLO = 'L' the RFP A contains the nt
   85: *>          elements of lower packed A. The LDA of RFP A is (N+1)/2 when
   86: *>          TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
   87: *>          even and N is odd. See the Note below for more details.
   88: *>
   89: *>          On exit, the (triangular) inverse of the original matrix, in
   90: *>          the same storage format.
   91: *> \endverbatim
   92: *>
   93: *> \param[out] INFO
   94: *> \verbatim
   95: *>          INFO is INTEGER
   96: *>          = 0: successful exit
   97: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   98: *>          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
   99: *>               matrix is singular and its inverse can not be computed.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee
  106: *> \author Univ. of California Berkeley
  107: *> \author Univ. of Colorado Denver
  108: *> \author NAG Ltd.
  109: *
  110: *> \ingroup doubleOTHERcomputational
  111: *
  112: *> \par Further Details:
  113: *  =====================
  114: *>
  115: *> \verbatim
  116: *>
  117: *>  We first consider Rectangular Full Packed (RFP) Format when N is
  118: *>  even. We give an example where N = 6.
  119: *>
  120: *>      AP is Upper             AP is Lower
  121: *>
  122: *>   00 01 02 03 04 05       00
  123: *>      11 12 13 14 15       10 11
  124: *>         22 23 24 25       20 21 22
  125: *>            33 34 35       30 31 32 33
  126: *>               44 45       40 41 42 43 44
  127: *>                  55       50 51 52 53 54 55
  128: *>
  129: *>
  130: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  131: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  132: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  133: *>  the transpose of the first three columns of AP upper.
  134: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  135: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  136: *>  the transpose of the last three columns of AP lower.
  137: *>  This covers the case N even and TRANSR = 'N'.
  138: *>
  139: *>         RFP A                   RFP A
  140: *>
  141: *>        03 04 05                33 43 53
  142: *>        13 14 15                00 44 54
  143: *>        23 24 25                10 11 55
  144: *>        33 34 35                20 21 22
  145: *>        00 44 45                30 31 32
  146: *>        01 11 55                40 41 42
  147: *>        02 12 22                50 51 52
  148: *>
  149: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  150: *>  transpose of RFP A above. One therefore gets:
  151: *>
  152: *>
  153: *>           RFP A                   RFP A
  154: *>
  155: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  156: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  157: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  158: *>
  159: *>
  160: *>  We then consider Rectangular Full Packed (RFP) Format when N is
  161: *>  odd. We give an example where N = 5.
  162: *>
  163: *>     AP is Upper                 AP is Lower
  164: *>
  165: *>   00 01 02 03 04              00
  166: *>      11 12 13 14              10 11
  167: *>         22 23 24              20 21 22
  168: *>            33 34              30 31 32 33
  169: *>               44              40 41 42 43 44
  170: *>
  171: *>
  172: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  173: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  174: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  175: *>  the transpose of the first two columns of AP upper.
  176: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  177: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  178: *>  the transpose of the last two columns of AP lower.
  179: *>  This covers the case N odd and TRANSR = 'N'.
  180: *>
  181: *>         RFP A                   RFP A
  182: *>
  183: *>        02 03 04                00 33 43
  184: *>        12 13 14                10 11 44
  185: *>        22 23 24                20 21 22
  186: *>        00 33 34                30 31 32
  187: *>        01 11 44                40 41 42
  188: *>
  189: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  190: *>  transpose of RFP A above. One therefore gets:
  191: *>
  192: *>           RFP A                   RFP A
  193: *>
  194: *>     02 12 22 00 01             00 10 20 30 40 50
  195: *>     03 13 23 33 11             33 11 21 31 41 51
  196: *>     04 14 24 34 44             43 44 22 32 42 52
  197: *> \endverbatim
  198: *>
  199: *  =====================================================================
  200:       SUBROUTINE DTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
  201: *
  202: *  -- LAPACK computational routine --
  203: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  204: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  205: *
  206: *     .. Scalar Arguments ..
  207:       CHARACTER          TRANSR, UPLO, DIAG
  208:       INTEGER            INFO, N
  209: *     ..
  210: *     .. Array Arguments ..
  211:       DOUBLE PRECISION   A( 0: * )
  212: *     ..
  213: *
  214: *  =====================================================================
  215: *
  216: *     .. Parameters ..
  217:       DOUBLE PRECISION   ONE
  218:       PARAMETER          ( ONE = 1.0D+0 )
  219: *     ..
  220: *     .. Local Scalars ..
  221:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  222:       INTEGER            N1, N2, K
  223: *     ..
  224: *     .. External Functions ..
  225:       LOGICAL            LSAME
  226:       EXTERNAL           LSAME
  227: *     ..
  228: *     .. External Subroutines ..
  229:       EXTERNAL           XERBLA, DTRMM, DTRTRI
  230: *     ..
  231: *     .. Intrinsic Functions ..
  232:       INTRINSIC          MOD
  233: *     ..
  234: *     .. Executable Statements ..
  235: *
  236: *     Test the input parameters.
  237: *
  238:       INFO = 0
  239:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  240:       LOWER = LSAME( UPLO, 'L' )
  241:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  242:          INFO = -1
  243:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  244:          INFO = -2
  245:       ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
  246:      $         THEN
  247:          INFO = -3
  248:       ELSE IF( N.LT.0 ) THEN
  249:          INFO = -4
  250:       END IF
  251:       IF( INFO.NE.0 ) THEN
  252:          CALL XERBLA( 'DTFTRI', -INFO )
  253:          RETURN
  254:       END IF
  255: *
  256: *     Quick return if possible
  257: *
  258:       IF( N.EQ.0 )
  259:      $   RETURN
  260: *
  261: *     If N is odd, set NISODD = .TRUE.
  262: *     If N is even, set K = N/2 and NISODD = .FALSE.
  263: *
  264:       IF( MOD( N, 2 ).EQ.0 ) THEN
  265:          K = N / 2
  266:          NISODD = .FALSE.
  267:       ELSE
  268:          NISODD = .TRUE.
  269:       END IF
  270: *
  271: *     Set N1 and N2 depending on LOWER
  272: *
  273:       IF( LOWER ) THEN
  274:          N2 = N / 2
  275:          N1 = N - N2
  276:       ELSE
  277:          N1 = N / 2
  278:          N2 = N - N1
  279:       END IF
  280: *
  281: *
  282: *     start execution: there are eight cases
  283: *
  284:       IF( NISODD ) THEN
  285: *
  286: *        N is odd
  287: *
  288:          IF( NORMALTRANSR ) THEN
  289: *
  290: *           N is odd and TRANSR = 'N'
  291: *
  292:             IF( LOWER ) THEN
  293: *
  294: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  295: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  296: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  297: *
  298:                CALL DTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
  299:                IF( INFO.GT.0 )
  300:      $            RETURN
  301:                CALL DTRMM( 'R', 'L', 'N', DIAG, N2, N1, -ONE, A( 0 ),
  302:      $                     N, A( N1 ), N )
  303:                CALL DTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
  304:                IF( INFO.GT.0 )
  305:      $            INFO = INFO + N1
  306:                IF( INFO.GT.0 )
  307:      $            RETURN
  308:                CALL DTRMM( 'L', 'U', 'T', DIAG, N2, N1, ONE, A( N ), N,
  309:      $                     A( N1 ), N )
  310: *
  311:             ELSE
  312: *
  313: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  314: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  315: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  316: *
  317:                CALL DTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
  318:                IF( INFO.GT.0 )
  319:      $            RETURN
  320:                CALL DTRMM( 'L', 'L', 'T', DIAG, N1, N2, -ONE, A( N2 ),
  321:      $                     N, A( 0 ), N )
  322:                CALL DTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
  323:                IF( INFO.GT.0 )
  324:      $            INFO = INFO + N1
  325:                IF( INFO.GT.0 )
  326:      $            RETURN
  327:                CALL DTRMM( 'R', 'U', 'N', DIAG, N1, N2, ONE, A( N1 ),
  328:      $                     N, A( 0 ), N )
  329: *
  330:             END IF
  331: *
  332:          ELSE
  333: *
  334: *           N is odd and TRANSR = 'T'
  335: *
  336:             IF( LOWER ) THEN
  337: *
  338: *              SRPA for LOWER, TRANSPOSE and N is odd
  339: *              T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
  340: *
  341:                CALL DTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
  342:                IF( INFO.GT.0 )
  343:      $            RETURN
  344:                CALL DTRMM( 'L', 'U', 'N', DIAG, N1, N2, -ONE, A( 0 ),
  345:      $                     N1, A( N1*N1 ), N1 )
  346:                CALL DTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
  347:                IF( INFO.GT.0 )
  348:      $            INFO = INFO + N1
  349:                IF( INFO.GT.0 )
  350:      $            RETURN
  351:                CALL DTRMM( 'R', 'L', 'T', DIAG, N1, N2, ONE, A( 1 ),
  352:      $                     N1, A( N1*N1 ), N1 )
  353: *
  354:             ELSE
  355: *
  356: *              SRPA for UPPER, TRANSPOSE and N is odd
  357: *              T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
  358: *
  359:                CALL DTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
  360:                IF( INFO.GT.0 )
  361:      $            RETURN
  362:                CALL DTRMM( 'R', 'U', 'T', DIAG, N2, N1, -ONE,
  363:      $                     A( N2*N2 ), N2, A( 0 ), N2 )
  364:                CALL DTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
  365:                IF( INFO.GT.0 )
  366:      $            INFO = INFO + N1
  367:                IF( INFO.GT.0 )
  368:      $            RETURN
  369:                CALL DTRMM( 'L', 'L', 'N', DIAG, N2, N1, ONE,
  370:      $                     A( N1*N2 ), N2, A( 0 ), N2 )
  371:             END IF
  372: *
  373:          END IF
  374: *
  375:       ELSE
  376: *
  377: *        N is even
  378: *
  379:          IF( NORMALTRANSR ) THEN
  380: *
  381: *           N is even and TRANSR = 'N'
  382: *
  383:             IF( LOWER ) THEN
  384: *
  385: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  386: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  387: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  388: *
  389:                CALL DTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
  390:                IF( INFO.GT.0 )
  391:      $            RETURN
  392:                CALL DTRMM( 'R', 'L', 'N', DIAG, K, K, -ONE, A( 1 ),
  393:      $                     N+1, A( K+1 ), N+1 )
  394:                CALL DTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
  395:                IF( INFO.GT.0 )
  396:      $            INFO = INFO + K
  397:                IF( INFO.GT.0 )
  398:      $            RETURN
  399:                CALL DTRMM( 'L', 'U', 'T', DIAG, K, K, ONE, A( 0 ), N+1,
  400:      $                     A( K+1 ), N+1 )
  401: *
  402:             ELSE
  403: *
  404: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  405: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  406: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  407: *
  408:                CALL DTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
  409:                IF( INFO.GT.0 )
  410:      $            RETURN
  411:                CALL DTRMM( 'L', 'L', 'T', DIAG, K, K, -ONE, A( K+1 ),
  412:      $                     N+1, A( 0 ), N+1 )
  413:                CALL DTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
  414:                IF( INFO.GT.0 )
  415:      $            INFO = INFO + K
  416:                IF( INFO.GT.0 )
  417:      $            RETURN
  418:                CALL DTRMM( 'R', 'U', 'N', DIAG, K, K, ONE, A( K ), N+1,
  419:      $                     A( 0 ), N+1 )
  420:             END IF
  421:          ELSE
  422: *
  423: *           N is even and TRANSR = 'T'
  424: *
  425:             IF( LOWER ) THEN
  426: *
  427: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  428: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  429: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  430: *
  431:                CALL DTRTRI( 'U', DIAG, K, A( K ), K, INFO )
  432:                IF( INFO.GT.0 )
  433:      $            RETURN
  434:                CALL DTRMM( 'L', 'U', 'N', DIAG, K, K, -ONE, A( K ), K,
  435:      $                     A( K*( K+1 ) ), K )
  436:                CALL DTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
  437:                IF( INFO.GT.0 )
  438:      $            INFO = INFO + K
  439:                IF( INFO.GT.0 )
  440:      $            RETURN
  441:                CALL DTRMM( 'R', 'L', 'T', DIAG, K, K, ONE, A( 0 ), K,
  442:      $                     A( K*( K+1 ) ), K )
  443:             ELSE
  444: *
  445: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  446: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  447: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  448: *
  449:                CALL DTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
  450:                IF( INFO.GT.0 )
  451:      $            RETURN
  452:                CALL DTRMM( 'R', 'U', 'T', DIAG, K, K, -ONE,
  453:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
  454:                CALL DTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
  455:                IF( INFO.GT.0 )
  456:      $            INFO = INFO + K
  457:                IF( INFO.GT.0 )
  458:      $            RETURN
  459:                CALL DTRMM( 'L', 'L', 'N', DIAG, K, K, ONE, A( K*K ), K,
  460:      $                     A( 0 ), K )
  461:             END IF
  462:          END IF
  463:       END IF
  464: *
  465:       RETURN
  466: *
  467: *     End of DTFTRI
  468: *
  469:       END

CVSweb interface <joel.bertrand@systella.fr>