File:  [local] / rpl / lapack / lapack / dtftri.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:27 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2.2)                                  --
    4: *
    5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
    6: *  -- June 2010     --
    7: *
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          TRANSR, UPLO, DIAG
   13:       INTEGER            INFO, N
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   A( 0: * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DTFTRI computes the inverse of a triangular matrix A stored in RFP
   23: *  format.
   24: *
   25: *  This is a Level 3 BLAS version of the algorithm.
   26: *
   27: *  Arguments
   28: *  =========
   29: *
   30: *  TRANSR  (input) CHARACTER
   31: *          = 'N':  The Normal TRANSR of RFP A is stored;
   32: *          = 'T':  The Transpose TRANSR of RFP A is stored.
   33: *
   34: *  UPLO    (input) CHARACTER
   35: *          = 'U':  A is upper triangular;
   36: *          = 'L':  A is lower triangular.
   37: *
   38: *  DIAG    (input) CHARACTER
   39: *          = 'N':  A is non-unit triangular;
   40: *          = 'U':  A is unit triangular.
   41: *
   42: *  N       (input) INTEGER
   43: *          The order of the matrix A.  N >= 0.
   44: *
   45: *  A       (input/output) DOUBLE PRECISION  array, dimension (0:nt-1);
   46: *          nt=N*(N+1)/2. On entry, the triangular factor of a Hermitian
   47: *          Positive Definite matrix A in RFP format. RFP format is
   48: *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   49: *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   50: *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
   51: *          the transpose of RFP A as defined when
   52: *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   53: *          follows: If UPLO = 'U' the RFP A contains the nt elements of
   54: *          upper packed A; If UPLO = 'L' the RFP A contains the nt
   55: *          elements of lower packed A. The LDA of RFP A is (N+1)/2 when
   56: *          TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
   57: *          even and N is odd. See the Note below for more details.
   58: *
   59: *          On exit, the (triangular) inverse of the original matrix, in
   60: *          the same storage format.
   61: *
   62: *  INFO    (output) INTEGER
   63: *          = 0: successful exit
   64: *          < 0: if INFO = -i, the i-th argument had an illegal value
   65: *          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
   66: *               matrix is singular and its inverse can not be computed.
   67: *
   68: *  Further Details
   69: *  ===============
   70: *
   71: *  We first consider Rectangular Full Packed (RFP) Format when N is
   72: *  even. We give an example where N = 6.
   73: *
   74: *      AP is Upper             AP is Lower
   75: *
   76: *   00 01 02 03 04 05       00
   77: *      11 12 13 14 15       10 11
   78: *         22 23 24 25       20 21 22
   79: *            33 34 35       30 31 32 33
   80: *               44 45       40 41 42 43 44
   81: *                  55       50 51 52 53 54 55
   82: *
   83: *
   84: *  Let TRANSR = 'N'. RFP holds AP as follows:
   85: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
   86: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
   87: *  the transpose of the first three columns of AP upper.
   88: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
   89: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
   90: *  the transpose of the last three columns of AP lower.
   91: *  This covers the case N even and TRANSR = 'N'.
   92: *
   93: *         RFP A                   RFP A
   94: *
   95: *        03 04 05                33 43 53
   96: *        13 14 15                00 44 54
   97: *        23 24 25                10 11 55
   98: *        33 34 35                20 21 22
   99: *        00 44 45                30 31 32
  100: *        01 11 55                40 41 42
  101: *        02 12 22                50 51 52
  102: *
  103: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  104: *  transpose of RFP A above. One therefore gets:
  105: *
  106: *
  107: *           RFP A                   RFP A
  108: *
  109: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  110: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  111: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  112: *
  113: *
  114: *  We then consider Rectangular Full Packed (RFP) Format when N is
  115: *  odd. We give an example where N = 5.
  116: *
  117: *     AP is Upper                 AP is Lower
  118: *
  119: *   00 01 02 03 04              00
  120: *      11 12 13 14              10 11
  121: *         22 23 24              20 21 22
  122: *            33 34              30 31 32 33
  123: *               44              40 41 42 43 44
  124: *
  125: *
  126: *  Let TRANSR = 'N'. RFP holds AP as follows:
  127: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  128: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  129: *  the transpose of the first two columns of AP upper.
  130: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  131: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  132: *  the transpose of the last two columns of AP lower.
  133: *  This covers the case N odd and TRANSR = 'N'.
  134: *
  135: *         RFP A                   RFP A
  136: *
  137: *        02 03 04                00 33 43
  138: *        12 13 14                10 11 44
  139: *        22 23 24                20 21 22
  140: *        00 33 34                30 31 32
  141: *        01 11 44                40 41 42
  142: *
  143: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  144: *  transpose of RFP A above. One therefore gets:
  145: *
  146: *           RFP A                   RFP A
  147: *
  148: *     02 12 22 00 01             00 10 20 30 40 50
  149: *     03 13 23 33 11             33 11 21 31 41 51
  150: *     04 14 24 34 44             43 44 22 32 42 52
  151: *
  152: *  =====================================================================
  153: *
  154: *     .. Parameters ..
  155:       DOUBLE PRECISION   ONE
  156:       PARAMETER          ( ONE = 1.0D+0 )
  157: *     ..
  158: *     .. Local Scalars ..
  159:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  160:       INTEGER            N1, N2, K
  161: *     ..
  162: *     .. External Functions ..
  163:       LOGICAL            LSAME
  164:       EXTERNAL           LSAME
  165: *     ..
  166: *     .. External Subroutines ..
  167:       EXTERNAL           XERBLA, DTRMM, DTRTRI
  168: *     ..
  169: *     .. Intrinsic Functions ..
  170:       INTRINSIC          MOD
  171: *     ..
  172: *     .. Executable Statements ..
  173: *
  174: *     Test the input parameters.
  175: *
  176:       INFO = 0
  177:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  178:       LOWER = LSAME( UPLO, 'L' )
  179:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  180:          INFO = -1
  181:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  182:          INFO = -2
  183:       ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
  184:      +         THEN
  185:          INFO = -3
  186:       ELSE IF( N.LT.0 ) THEN
  187:          INFO = -4
  188:       END IF
  189:       IF( INFO.NE.0 ) THEN
  190:          CALL XERBLA( 'DTFTRI', -INFO )
  191:          RETURN
  192:       END IF
  193: *
  194: *     Quick return if possible
  195: *
  196:       IF( N.EQ.0 )
  197:      +   RETURN
  198: *
  199: *     If N is odd, set NISODD = .TRUE.
  200: *     If N is even, set K = N/2 and NISODD = .FALSE.
  201: *
  202:       IF( MOD( N, 2 ).EQ.0 ) THEN
  203:          K = N / 2
  204:          NISODD = .FALSE.
  205:       ELSE
  206:          NISODD = .TRUE.
  207:       END IF
  208: *
  209: *     Set N1 and N2 depending on LOWER
  210: *
  211:       IF( LOWER ) THEN
  212:          N2 = N / 2
  213:          N1 = N - N2
  214:       ELSE
  215:          N1 = N / 2
  216:          N2 = N - N1
  217:       END IF
  218: *
  219: *
  220: *     start execution: there are eight cases
  221: *
  222:       IF( NISODD ) THEN
  223: *
  224: *        N is odd
  225: *
  226:          IF( NORMALTRANSR ) THEN
  227: *
  228: *           N is odd and TRANSR = 'N'
  229: *
  230:             IF( LOWER ) THEN
  231: *
  232: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  233: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  234: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  235: *
  236:                CALL DTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
  237:                IF( INFO.GT.0 )
  238:      +            RETURN
  239:                CALL DTRMM( 'R', 'L', 'N', DIAG, N2, N1, -ONE, A( 0 ),
  240:      +                     N, A( N1 ), N )
  241:                CALL DTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
  242:                IF( INFO.GT.0 )
  243:      +            INFO = INFO + N1
  244:                IF( INFO.GT.0 )
  245:      +            RETURN
  246:                CALL DTRMM( 'L', 'U', 'T', DIAG, N2, N1, ONE, A( N ), N,
  247:      +                     A( N1 ), N )
  248: *
  249:             ELSE
  250: *
  251: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  252: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  253: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  254: *
  255:                CALL DTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
  256:                IF( INFO.GT.0 )
  257:      +            RETURN
  258:                CALL DTRMM( 'L', 'L', 'T', DIAG, N1, N2, -ONE, A( N2 ),
  259:      +                     N, A( 0 ), N )
  260:                CALL DTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
  261:                IF( INFO.GT.0 )
  262:      +            INFO = INFO + N1
  263:                IF( INFO.GT.0 )
  264:      +            RETURN
  265:                CALL DTRMM( 'R', 'U', 'N', DIAG, N1, N2, ONE, A( N1 ),
  266:      +                     N, A( 0 ), N )
  267: *
  268:             END IF
  269: *
  270:          ELSE
  271: *
  272: *           N is odd and TRANSR = 'T'
  273: *
  274:             IF( LOWER ) THEN
  275: *
  276: *              SRPA for LOWER, TRANSPOSE and N is odd
  277: *              T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
  278: *
  279:                CALL DTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
  280:                IF( INFO.GT.0 )
  281:      +            RETURN
  282:                CALL DTRMM( 'L', 'U', 'N', DIAG, N1, N2, -ONE, A( 0 ),
  283:      +                     N1, A( N1*N1 ), N1 )
  284:                CALL DTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
  285:                IF( INFO.GT.0 )
  286:      +            INFO = INFO + N1
  287:                IF( INFO.GT.0 )
  288:      +            RETURN
  289:                CALL DTRMM( 'R', 'L', 'T', DIAG, N1, N2, ONE, A( 1 ),
  290:      +                     N1, A( N1*N1 ), N1 )
  291: *
  292:             ELSE
  293: *
  294: *              SRPA for UPPER, TRANSPOSE and N is odd
  295: *              T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
  296: *
  297:                CALL DTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
  298:                IF( INFO.GT.0 )
  299:      +            RETURN
  300:                CALL DTRMM( 'R', 'U', 'T', DIAG, N2, N1, -ONE,
  301:      +                     A( N2*N2 ), N2, A( 0 ), N2 )
  302:                CALL DTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
  303:                IF( INFO.GT.0 )
  304:      +            INFO = INFO + N1
  305:                IF( INFO.GT.0 )
  306:      +            RETURN
  307:                CALL DTRMM( 'L', 'L', 'N', DIAG, N2, N1, ONE,
  308:      +                     A( N1*N2 ), N2, A( 0 ), N2 )
  309:             END IF
  310: *
  311:          END IF
  312: *
  313:       ELSE
  314: *
  315: *        N is even
  316: *
  317:          IF( NORMALTRANSR ) THEN
  318: *
  319: *           N is even and TRANSR = 'N'
  320: *
  321:             IF( LOWER ) THEN
  322: *
  323: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  324: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  325: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  326: *
  327:                CALL DTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
  328:                IF( INFO.GT.0 )
  329:      +            RETURN
  330:                CALL DTRMM( 'R', 'L', 'N', DIAG, K, K, -ONE, A( 1 ),
  331:      +                     N+1, A( K+1 ), N+1 )
  332:                CALL DTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
  333:                IF( INFO.GT.0 )
  334:      +            INFO = INFO + K
  335:                IF( INFO.GT.0 )
  336:      +            RETURN
  337:                CALL DTRMM( 'L', 'U', 'T', DIAG, K, K, ONE, A( 0 ), N+1,
  338:      +                     A( K+1 ), N+1 )
  339: *
  340:             ELSE
  341: *
  342: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  343: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  344: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  345: *
  346:                CALL DTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
  347:                IF( INFO.GT.0 )
  348:      +            RETURN
  349:                CALL DTRMM( 'L', 'L', 'T', DIAG, K, K, -ONE, A( K+1 ),
  350:      +                     N+1, A( 0 ), N+1 )
  351:                CALL DTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
  352:                IF( INFO.GT.0 )
  353:      +            INFO = INFO + K
  354:                IF( INFO.GT.0 )
  355:      +            RETURN
  356:                CALL DTRMM( 'R', 'U', 'N', DIAG, K, K, ONE, A( K ), N+1,
  357:      +                     A( 0 ), N+1 )
  358:             END IF
  359:          ELSE
  360: *
  361: *           N is even and TRANSR = 'T'
  362: *
  363:             IF( LOWER ) THEN
  364: *
  365: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  366: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  367: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  368: *
  369:                CALL DTRTRI( 'U', DIAG, K, A( K ), K, INFO )
  370:                IF( INFO.GT.0 )
  371:      +            RETURN
  372:                CALL DTRMM( 'L', 'U', 'N', DIAG, K, K, -ONE, A( K ), K,
  373:      +                     A( K*( K+1 ) ), K )
  374:                CALL DTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
  375:                IF( INFO.GT.0 )
  376:      +            INFO = INFO + K
  377:                IF( INFO.GT.0 )
  378:      +            RETURN
  379:                CALL DTRMM( 'R', 'L', 'T', DIAG, K, K, ONE, A( 0 ), K,
  380:      +                     A( K*( K+1 ) ), K )
  381:             ELSE
  382: *
  383: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  384: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  385: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  386: *
  387:                CALL DTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
  388:                IF( INFO.GT.0 )
  389:      +            RETURN
  390:                CALL DTRMM( 'R', 'U', 'T', DIAG, K, K, -ONE,
  391:      +                     A( K*( K+1 ) ), K, A( 0 ), K )
  392:                CALL DTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
  393:                IF( INFO.GT.0 )
  394:      +            INFO = INFO + K
  395:                IF( INFO.GT.0 )
  396:      +            RETURN
  397:                CALL DTRMM( 'L', 'L', 'N', DIAG, K, K, ONE, A( K*K ), K,
  398:      +                     A( 0 ), K )
  399:             END IF
  400:          END IF
  401:       END IF
  402: *
  403:       RETURN
  404: *
  405: *     End of DTFTRI
  406: *
  407:       END

CVSweb interface <joel.bertrand@systella.fr>