File:  [local] / rpl / lapack / lapack / dtftri.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:05 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DTFTRI
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DTFTRI + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtftri.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtftri.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtftri.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO, DIAG
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( 0: * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DTFTRI computes the inverse of a triangular matrix A stored in RFP
   38: *> format.
   39: *>
   40: *> This is a Level 3 BLAS version of the algorithm.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] TRANSR
   47: *> \verbatim
   48: *>          TRANSR is CHARACTER*1
   49: *>          = 'N':  The Normal TRANSR of RFP A is stored;
   50: *>          = 'T':  The Transpose TRANSR of RFP A is stored.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          = 'U':  A is upper triangular;
   57: *>          = 'L':  A is lower triangular.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] DIAG
   61: *> \verbatim
   62: *>          DIAG is CHARACTER*1
   63: *>          = 'N':  A is non-unit triangular;
   64: *>          = 'U':  A is unit triangular.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The order of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in,out] A
   74: *> \verbatim
   75: *>          A is DOUBLE PRECISION array, dimension (0:nt-1);
   76: *>          nt=N*(N+1)/2. On entry, the triangular factor of a Hermitian
   77: *>          Positive Definite matrix A in RFP format. RFP format is
   78: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   79: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   80: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
   81: *>          the transpose of RFP A as defined when
   82: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   83: *>          follows: If UPLO = 'U' the RFP A contains the nt elements of
   84: *>          upper packed A; If UPLO = 'L' the RFP A contains the nt
   85: *>          elements of lower packed A. The LDA of RFP A is (N+1)/2 when
   86: *>          TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
   87: *>          even and N is odd. See the Note below for more details.
   88: *>
   89: *>          On exit, the (triangular) inverse of the original matrix, in
   90: *>          the same storage format.
   91: *> \endverbatim
   92: *>
   93: *> \param[out] INFO
   94: *> \verbatim
   95: *>          INFO is INTEGER
   96: *>          = 0: successful exit
   97: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   98: *>          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
   99: *>               matrix is singular and its inverse can not be computed.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee 
  106: *> \author Univ. of California Berkeley 
  107: *> \author Univ. of Colorado Denver 
  108: *> \author NAG Ltd. 
  109: *
  110: *> \date November 2011
  111: *
  112: *> \ingroup doubleOTHERcomputational
  113: *
  114: *> \par Further Details:
  115: *  =====================
  116: *>
  117: *> \verbatim
  118: *>
  119: *>  We first consider Rectangular Full Packed (RFP) Format when N is
  120: *>  even. We give an example where N = 6.
  121: *>
  122: *>      AP is Upper             AP is Lower
  123: *>
  124: *>   00 01 02 03 04 05       00
  125: *>      11 12 13 14 15       10 11
  126: *>         22 23 24 25       20 21 22
  127: *>            33 34 35       30 31 32 33
  128: *>               44 45       40 41 42 43 44
  129: *>                  55       50 51 52 53 54 55
  130: *>
  131: *>
  132: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  133: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  134: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  135: *>  the transpose of the first three columns of AP upper.
  136: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  137: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  138: *>  the transpose of the last three columns of AP lower.
  139: *>  This covers the case N even and TRANSR = 'N'.
  140: *>
  141: *>         RFP A                   RFP A
  142: *>
  143: *>        03 04 05                33 43 53
  144: *>        13 14 15                00 44 54
  145: *>        23 24 25                10 11 55
  146: *>        33 34 35                20 21 22
  147: *>        00 44 45                30 31 32
  148: *>        01 11 55                40 41 42
  149: *>        02 12 22                50 51 52
  150: *>
  151: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  152: *>  transpose of RFP A above. One therefore gets:
  153: *>
  154: *>
  155: *>           RFP A                   RFP A
  156: *>
  157: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  158: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  159: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  160: *>
  161: *>
  162: *>  We then consider Rectangular Full Packed (RFP) Format when N is
  163: *>  odd. We give an example where N = 5.
  164: *>
  165: *>     AP is Upper                 AP is Lower
  166: *>
  167: *>   00 01 02 03 04              00
  168: *>      11 12 13 14              10 11
  169: *>         22 23 24              20 21 22
  170: *>            33 34              30 31 32 33
  171: *>               44              40 41 42 43 44
  172: *>
  173: *>
  174: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  175: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  176: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  177: *>  the transpose of the first two columns of AP upper.
  178: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  179: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  180: *>  the transpose of the last two columns of AP lower.
  181: *>  This covers the case N odd and TRANSR = 'N'.
  182: *>
  183: *>         RFP A                   RFP A
  184: *>
  185: *>        02 03 04                00 33 43
  186: *>        12 13 14                10 11 44
  187: *>        22 23 24                20 21 22
  188: *>        00 33 34                30 31 32
  189: *>        01 11 44                40 41 42
  190: *>
  191: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  192: *>  transpose of RFP A above. One therefore gets:
  193: *>
  194: *>           RFP A                   RFP A
  195: *>
  196: *>     02 12 22 00 01             00 10 20 30 40 50
  197: *>     03 13 23 33 11             33 11 21 31 41 51
  198: *>     04 14 24 34 44             43 44 22 32 42 52
  199: *> \endverbatim
  200: *>
  201: *  =====================================================================
  202:       SUBROUTINE DTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
  203: *
  204: *  -- LAPACK computational routine (version 3.4.0) --
  205: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  206: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  207: *     November 2011
  208: *
  209: *     .. Scalar Arguments ..
  210:       CHARACTER          TRANSR, UPLO, DIAG
  211:       INTEGER            INFO, N
  212: *     ..
  213: *     .. Array Arguments ..
  214:       DOUBLE PRECISION   A( 0: * )
  215: *     ..
  216: *
  217: *  =====================================================================
  218: *
  219: *     .. Parameters ..
  220:       DOUBLE PRECISION   ONE
  221:       PARAMETER          ( ONE = 1.0D+0 )
  222: *     ..
  223: *     .. Local Scalars ..
  224:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  225:       INTEGER            N1, N2, K
  226: *     ..
  227: *     .. External Functions ..
  228:       LOGICAL            LSAME
  229:       EXTERNAL           LSAME
  230: *     ..
  231: *     .. External Subroutines ..
  232:       EXTERNAL           XERBLA, DTRMM, DTRTRI
  233: *     ..
  234: *     .. Intrinsic Functions ..
  235:       INTRINSIC          MOD
  236: *     ..
  237: *     .. Executable Statements ..
  238: *
  239: *     Test the input parameters.
  240: *
  241:       INFO = 0
  242:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  243:       LOWER = LSAME( UPLO, 'L' )
  244:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  245:          INFO = -1
  246:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  247:          INFO = -2
  248:       ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
  249:      $         THEN
  250:          INFO = -3
  251:       ELSE IF( N.LT.0 ) THEN
  252:          INFO = -4
  253:       END IF
  254:       IF( INFO.NE.0 ) THEN
  255:          CALL XERBLA( 'DTFTRI', -INFO )
  256:          RETURN
  257:       END IF
  258: *
  259: *     Quick return if possible
  260: *
  261:       IF( N.EQ.0 )
  262:      $   RETURN
  263: *
  264: *     If N is odd, set NISODD = .TRUE.
  265: *     If N is even, set K = N/2 and NISODD = .FALSE.
  266: *
  267:       IF( MOD( N, 2 ).EQ.0 ) THEN
  268:          K = N / 2
  269:          NISODD = .FALSE.
  270:       ELSE
  271:          NISODD = .TRUE.
  272:       END IF
  273: *
  274: *     Set N1 and N2 depending on LOWER
  275: *
  276:       IF( LOWER ) THEN
  277:          N2 = N / 2
  278:          N1 = N - N2
  279:       ELSE
  280:          N1 = N / 2
  281:          N2 = N - N1
  282:       END IF
  283: *
  284: *
  285: *     start execution: there are eight cases
  286: *
  287:       IF( NISODD ) THEN
  288: *
  289: *        N is odd
  290: *
  291:          IF( NORMALTRANSR ) THEN
  292: *
  293: *           N is odd and TRANSR = 'N'
  294: *
  295:             IF( LOWER ) THEN
  296: *
  297: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  298: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  299: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  300: *
  301:                CALL DTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
  302:                IF( INFO.GT.0 )
  303:      $            RETURN
  304:                CALL DTRMM( 'R', 'L', 'N', DIAG, N2, N1, -ONE, A( 0 ),
  305:      $                     N, A( N1 ), N )
  306:                CALL DTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
  307:                IF( INFO.GT.0 )
  308:      $            INFO = INFO + N1
  309:                IF( INFO.GT.0 )
  310:      $            RETURN
  311:                CALL DTRMM( 'L', 'U', 'T', DIAG, N2, N1, ONE, A( N ), N,
  312:      $                     A( N1 ), N )
  313: *
  314:             ELSE
  315: *
  316: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  317: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  318: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  319: *
  320:                CALL DTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
  321:                IF( INFO.GT.0 )
  322:      $            RETURN
  323:                CALL DTRMM( 'L', 'L', 'T', DIAG, N1, N2, -ONE, A( N2 ),
  324:      $                     N, A( 0 ), N )
  325:                CALL DTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
  326:                IF( INFO.GT.0 )
  327:      $            INFO = INFO + N1
  328:                IF( INFO.GT.0 )
  329:      $            RETURN
  330:                CALL DTRMM( 'R', 'U', 'N', DIAG, N1, N2, ONE, A( N1 ),
  331:      $                     N, A( 0 ), N )
  332: *
  333:             END IF
  334: *
  335:          ELSE
  336: *
  337: *           N is odd and TRANSR = 'T'
  338: *
  339:             IF( LOWER ) THEN
  340: *
  341: *              SRPA for LOWER, TRANSPOSE and N is odd
  342: *              T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
  343: *
  344:                CALL DTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
  345:                IF( INFO.GT.0 )
  346:      $            RETURN
  347:                CALL DTRMM( 'L', 'U', 'N', DIAG, N1, N2, -ONE, A( 0 ),
  348:      $                     N1, A( N1*N1 ), N1 )
  349:                CALL DTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
  350:                IF( INFO.GT.0 )
  351:      $            INFO = INFO + N1
  352:                IF( INFO.GT.0 )
  353:      $            RETURN
  354:                CALL DTRMM( 'R', 'L', 'T', DIAG, N1, N2, ONE, A( 1 ),
  355:      $                     N1, A( N1*N1 ), N1 )
  356: *
  357:             ELSE
  358: *
  359: *              SRPA for UPPER, TRANSPOSE and N is odd
  360: *              T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
  361: *
  362:                CALL DTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
  363:                IF( INFO.GT.0 )
  364:      $            RETURN
  365:                CALL DTRMM( 'R', 'U', 'T', DIAG, N2, N1, -ONE,
  366:      $                     A( N2*N2 ), N2, A( 0 ), N2 )
  367:                CALL DTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
  368:                IF( INFO.GT.0 )
  369:      $            INFO = INFO + N1
  370:                IF( INFO.GT.0 )
  371:      $            RETURN
  372:                CALL DTRMM( 'L', 'L', 'N', DIAG, N2, N1, ONE,
  373:      $                     A( N1*N2 ), N2, A( 0 ), N2 )
  374:             END IF
  375: *
  376:          END IF
  377: *
  378:       ELSE
  379: *
  380: *        N is even
  381: *
  382:          IF( NORMALTRANSR ) THEN
  383: *
  384: *           N is even and TRANSR = 'N'
  385: *
  386:             IF( LOWER ) THEN
  387: *
  388: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  389: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  390: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  391: *
  392:                CALL DTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
  393:                IF( INFO.GT.0 )
  394:      $            RETURN
  395:                CALL DTRMM( 'R', 'L', 'N', DIAG, K, K, -ONE, A( 1 ),
  396:      $                     N+1, A( K+1 ), N+1 )
  397:                CALL DTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
  398:                IF( INFO.GT.0 )
  399:      $            INFO = INFO + K
  400:                IF( INFO.GT.0 )
  401:      $            RETURN
  402:                CALL DTRMM( 'L', 'U', 'T', DIAG, K, K, ONE, A( 0 ), N+1,
  403:      $                     A( K+1 ), N+1 )
  404: *
  405:             ELSE
  406: *
  407: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  408: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  409: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  410: *
  411:                CALL DTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
  412:                IF( INFO.GT.0 )
  413:      $            RETURN
  414:                CALL DTRMM( 'L', 'L', 'T', DIAG, K, K, -ONE, A( K+1 ),
  415:      $                     N+1, A( 0 ), N+1 )
  416:                CALL DTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
  417:                IF( INFO.GT.0 )
  418:      $            INFO = INFO + K
  419:                IF( INFO.GT.0 )
  420:      $            RETURN
  421:                CALL DTRMM( 'R', 'U', 'N', DIAG, K, K, ONE, A( K ), N+1,
  422:      $                     A( 0 ), N+1 )
  423:             END IF
  424:          ELSE
  425: *
  426: *           N is even and TRANSR = 'T'
  427: *
  428:             IF( LOWER ) THEN
  429: *
  430: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  431: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  432: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  433: *
  434:                CALL DTRTRI( 'U', DIAG, K, A( K ), K, INFO )
  435:                IF( INFO.GT.0 )
  436:      $            RETURN
  437:                CALL DTRMM( 'L', 'U', 'N', DIAG, K, K, -ONE, A( K ), K,
  438:      $                     A( K*( K+1 ) ), K )
  439:                CALL DTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
  440:                IF( INFO.GT.0 )
  441:      $            INFO = INFO + K
  442:                IF( INFO.GT.0 )
  443:      $            RETURN
  444:                CALL DTRMM( 'R', 'L', 'T', DIAG, K, K, ONE, A( 0 ), K,
  445:      $                     A( K*( K+1 ) ), K )
  446:             ELSE
  447: *
  448: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  449: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  450: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  451: *
  452:                CALL DTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
  453:                IF( INFO.GT.0 )
  454:      $            RETURN
  455:                CALL DTRMM( 'R', 'U', 'T', DIAG, K, K, -ONE,
  456:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
  457:                CALL DTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
  458:                IF( INFO.GT.0 )
  459:      $            INFO = INFO + K
  460:                IF( INFO.GT.0 )
  461:      $            RETURN
  462:                CALL DTRMM( 'L', 'L', 'N', DIAG, K, K, ONE, A( K*K ), K,
  463:      $                     A( 0 ), K )
  464:             END IF
  465:          END IF
  466:       END IF
  467: *
  468:       RETURN
  469: *
  470: *     End of DTFTRI
  471: *
  472:       END

CVSweb interface <joel.bertrand@systella.fr>