--- rpl/lapack/lapack/dtfsm.f 2010/12/21 13:48:06 1.4 +++ rpl/lapack/lapack/dtfsm.f 2012/12/14 12:30:27 1.10 @@ -1,15 +1,287 @@ - SUBROUTINE DTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, - + B, LDB ) +*> \brief \b DTFSM solves a matrix equation (one operand is a triangular matrix in RFP format). +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DTFSM + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, +* B, LDB ) +* +* .. Scalar Arguments .. +* CHARACTER TRANSR, DIAG, SIDE, TRANS, UPLO +* INTEGER LDB, M, N +* DOUBLE PRECISION ALPHA +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( 0: * ), B( 0: LDB-1, 0: * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Level 3 BLAS like routine for A in RFP Format. +*> +*> DTFSM solves the matrix equation +*> +*> op( A )*X = alpha*B or X*op( A ) = alpha*B +*> +*> where alpha is a scalar, X and B are m by n matrices, A is a unit, or +*> non-unit, upper or lower triangular matrix and op( A ) is one of +*> +*> op( A ) = A or op( A ) = A**T. +*> +*> A is in Rectangular Full Packed (RFP) Format. +*> +*> The matrix X is overwritten on B. +*> \endverbatim * -* -- LAPACK routine (version 3.3.0) -- +* Arguments: +* ========== +* +*> \param[in] TRANSR +*> \verbatim +*> TRANSR is CHARACTER*1 +*> = 'N': The Normal Form of RFP A is stored; +*> = 'T': The Transpose Form of RFP A is stored. +*> \endverbatim +*> +*> \param[in] SIDE +*> \verbatim +*> SIDE is CHARACTER*1 +*> On entry, SIDE specifies whether op( A ) appears on the left +*> or right of X as follows: +*> +*> SIDE = 'L' or 'l' op( A )*X = alpha*B. +*> +*> SIDE = 'R' or 'r' X*op( A ) = alpha*B. +*> +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> On entry, UPLO specifies whether the RFP matrix A came from +*> an upper or lower triangular matrix as follows: +*> UPLO = 'U' or 'u' RFP A came from an upper triangular matrix +*> UPLO = 'L' or 'l' RFP A came from a lower triangular matrix +*> +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> On entry, TRANS specifies the form of op( A ) to be used +*> in the matrix multiplication as follows: +*> +*> TRANS = 'N' or 'n' op( A ) = A. +*> +*> TRANS = 'T' or 't' op( A ) = A'. +*> +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] DIAG +*> \verbatim +*> DIAG is CHARACTER*1 +*> On entry, DIAG specifies whether or not RFP A is unit +*> triangular as follows: +*> +*> DIAG = 'U' or 'u' A is assumed to be unit triangular. +*> +*> DIAG = 'N' or 'n' A is not assumed to be unit +*> triangular. +*> +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> On entry, M specifies the number of rows of B. M must be at +*> least zero. +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> On entry, N specifies the number of columns of B. N must be +*> at least zero. +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] ALPHA +*> \verbatim +*> ALPHA is DOUBLE PRECISION +*> On entry, ALPHA specifies the scalar alpha. When alpha is +*> zero then A is not referenced and B need not be set before +*> entry. +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (NT) +*> NT = N*(N+1)/2. On entry, the matrix A in RFP Format. +*> RFP Format is described by TRANSR, UPLO and N as follows: +*> If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even; +*> K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If +*> TRANSR = 'T' then RFP is the transpose of RFP A as +*> defined when TRANSR = 'N'. The contents of RFP A are defined +*> by UPLO as follows: If UPLO = 'U' the RFP A contains the NT +*> elements of upper packed A either in normal or +*> transpose Format. If UPLO = 'L' the RFP A contains +*> the NT elements of lower packed A either in normal or +*> transpose Format. The LDA of RFP A is (N+1)/2 when +*> TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is +*> even and is N when is odd. +*> See the Note below for more details. Unchanged on exit. +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension (LDB,N) +*> Before entry, the leading m by n part of the array B must +*> contain the right-hand side matrix B, and on exit is +*> overwritten by the solution matrix X. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> On entry, LDB specifies the first dimension of B as declared +*> in the calling (sub) program. LDB must be at least +*> max( 1, m ). +*> Unchanged on exit. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date September 2012 +* +*> \ingroup doubleOTHERcomputational +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> We first consider Rectangular Full Packed (RFP) Format when N is +*> even. We give an example where N = 6. +*> +*> AP is Upper AP is Lower +*> +*> 00 01 02 03 04 05 00 +*> 11 12 13 14 15 10 11 +*> 22 23 24 25 20 21 22 +*> 33 34 35 30 31 32 33 +*> 44 45 40 41 42 43 44 +*> 55 50 51 52 53 54 55 +*> +*> +*> Let TRANSR = 'N'. RFP holds AP as follows: +*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last +*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of +*> the transpose of the first three columns of AP upper. +*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first +*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of +*> the transpose of the last three columns of AP lower. +*> This covers the case N even and TRANSR = 'N'. +*> +*> RFP A RFP A +*> +*> 03 04 05 33 43 53 +*> 13 14 15 00 44 54 +*> 23 24 25 10 11 55 +*> 33 34 35 20 21 22 +*> 00 44 45 30 31 32 +*> 01 11 55 40 41 42 +*> 02 12 22 50 51 52 +*> +*> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the +*> transpose of RFP A above. One therefore gets: +*> +*> +*> RFP A RFP A +*> +*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 +*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 +*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 +*> +*> +*> We then consider Rectangular Full Packed (RFP) Format when N is +*> odd. We give an example where N = 5. +*> +*> AP is Upper AP is Lower +*> +*> 00 01 02 03 04 00 +*> 11 12 13 14 10 11 +*> 22 23 24 20 21 22 +*> 33 34 30 31 32 33 +*> 44 40 41 42 43 44 +*> +*> +*> Let TRANSR = 'N'. RFP holds AP as follows: +*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last +*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of +*> the transpose of the first two columns of AP upper. +*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first +*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of +*> the transpose of the last two columns of AP lower. +*> This covers the case N odd and TRANSR = 'N'. +*> +*> RFP A RFP A +*> +*> 02 03 04 00 33 43 +*> 12 13 14 10 11 44 +*> 22 23 24 20 21 22 +*> 00 33 34 30 31 32 +*> 01 11 44 40 41 42 +*> +*> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the +*> transpose of RFP A above. One therefore gets: +*> +*> RFP A RFP A +*> +*> 02 12 22 00 01 00 10 20 30 40 50 +*> 03 13 23 33 11 33 11 21 31 41 51 +*> 04 14 24 34 44 43 44 22 32 42 52 +*> \endverbatim * -* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- -* November 2010 +* ===================================================================== + SUBROUTINE DTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, + $ B, LDB ) * +* -- LAPACK computational routine (version 3.4.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* September 2012 * -* .. * .. Scalar Arguments .. CHARACTER TRANSR, DIAG, SIDE, TRANS, UPLO INTEGER LDB, M, N @@ -19,200 +291,6 @@ DOUBLE PRECISION A( 0: * ), B( 0: LDB-1, 0: * ) * .. * -* Purpose -* ======= -* -* Level 3 BLAS like routine for A in RFP Format. -* -* DTFSM solves the matrix equation -* -* op( A )*X = alpha*B or X*op( A ) = alpha*B -* -* where alpha is a scalar, X and B are m by n matrices, A is a unit, or -* non-unit, upper or lower triangular matrix and op( A ) is one of -* -* op( A ) = A or op( A ) = A'. -* -* A is in Rectangular Full Packed (RFP) Format. -* -* The matrix X is overwritten on B. -* -* Arguments -* ========== -* -* TRANSR (input) CHARACTER*1 -* = 'N': The Normal Form of RFP A is stored; -* = 'T': The Transpose Form of RFP A is stored. -* -* SIDE (input) CHARACTER*1 -* On entry, SIDE specifies whether op( A ) appears on the left -* or right of X as follows: -* -* SIDE = 'L' or 'l' op( A )*X = alpha*B. -* -* SIDE = 'R' or 'r' X*op( A ) = alpha*B. -* -* Unchanged on exit. -* -* UPLO (input) CHARACTER*1 -* On entry, UPLO specifies whether the RFP matrix A came from -* an upper or lower triangular matrix as follows: -* UPLO = 'U' or 'u' RFP A came from an upper triangular matrix -* UPLO = 'L' or 'l' RFP A came from a lower triangular matrix -* -* Unchanged on exit. -* -* TRANS (input) CHARACTER*1 -* On entry, TRANS specifies the form of op( A ) to be used -* in the matrix multiplication as follows: -* -* TRANS = 'N' or 'n' op( A ) = A. -* -* TRANS = 'T' or 't' op( A ) = A'. -* -* Unchanged on exit. -* -* DIAG (input) CHARACTER*1 -* On entry, DIAG specifies whether or not RFP A is unit -* triangular as follows: -* -* DIAG = 'U' or 'u' A is assumed to be unit triangular. -* -* DIAG = 'N' or 'n' A is not assumed to be unit -* triangular. -* -* Unchanged on exit. -* -* M (input) INTEGER -* On entry, M specifies the number of rows of B. M must be at -* least zero. -* Unchanged on exit. -* -* N (input) INTEGER -* On entry, N specifies the number of columns of B. N must be -* at least zero. -* Unchanged on exit. -* -* ALPHA (input) DOUBLE PRECISION -* On entry, ALPHA specifies the scalar alpha. When alpha is -* zero then A is not referenced and B need not be set before -* entry. -* Unchanged on exit. -* -* A (input) DOUBLE PRECISION array, dimension (NT) -* NT = N*(N+1)/2. On entry, the matrix A in RFP Format. -* RFP Format is described by TRANSR, UPLO and N as follows: -* If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even; -* K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If -* TRANSR = 'T' then RFP is the transpose of RFP A as -* defined when TRANSR = 'N'. The contents of RFP A are defined -* by UPLO as follows: If UPLO = 'U' the RFP A contains the NT -* elements of upper packed A either in normal or -* transpose Format. If UPLO = 'L' the RFP A contains -* the NT elements of lower packed A either in normal or -* transpose Format. The LDA of RFP A is (N+1)/2 when -* TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is -* even and is N when is odd. -* See the Note below for more details. Unchanged on exit. -* -* B (input/output) DOUBLE PRECISION array, dimension (LDB,N) -* Before entry, the leading m by n part of the array B must -* contain the right-hand side matrix B, and on exit is -* overwritten by the solution matrix X. -* -* LDB (input) INTEGER -* On entry, LDB specifies the first dimension of B as declared -* in the calling (sub) program. LDB must be at least -* max( 1, m ). -* Unchanged on exit. -* -* Further Details -* =============== -* -* We first consider Rectangular Full Packed (RFP) Format when N is -* even. We give an example where N = 6. -* -* AP is Upper AP is Lower -* -* 00 01 02 03 04 05 00 -* 11 12 13 14 15 10 11 -* 22 23 24 25 20 21 22 -* 33 34 35 30 31 32 33 -* 44 45 40 41 42 43 44 -* 55 50 51 52 53 54 55 -* -* -* Let TRANSR = 'N'. RFP holds AP as follows: -* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last -* three columns of AP upper. The lower triangle A(4:6,0:2) consists of -* the transpose of the first three columns of AP upper. -* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first -* three columns of AP lower. The upper triangle A(0:2,0:2) consists of -* the transpose of the last three columns of AP lower. -* This covers the case N even and TRANSR = 'N'. -* -* RFP A RFP A -* -* 03 04 05 33 43 53 -* 13 14 15 00 44 54 -* 23 24 25 10 11 55 -* 33 34 35 20 21 22 -* 00 44 45 30 31 32 -* 01 11 55 40 41 42 -* 02 12 22 50 51 52 -* -* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the -* transpose of RFP A above. One therefore gets: -* -* -* RFP A RFP A -* -* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 -* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 -* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 -* -* -* We then consider Rectangular Full Packed (RFP) Format when N is -* odd. We give an example where N = 5. -* -* AP is Upper AP is Lower -* -* 00 01 02 03 04 00 -* 11 12 13 14 10 11 -* 22 23 24 20 21 22 -* 33 34 30 31 32 33 -* 44 40 41 42 43 44 -* -* -* Let TRANSR = 'N'. RFP holds AP as follows: -* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last -* three columns of AP upper. The lower triangle A(3:4,0:1) consists of -* the transpose of the first two columns of AP upper. -* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first -* three columns of AP lower. The upper triangle A(0:1,1:2) consists of -* the transpose of the last two columns of AP lower. -* This covers the case N odd and TRANSR = 'N'. -* -* RFP A RFP A -* -* 02 03 04 00 33 43 -* 12 13 14 10 11 44 -* 22 23 24 20 21 22 -* 00 33 34 30 31 32 -* 01 11 44 40 41 42 -* -* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the -* transpose of RFP A above. One therefore gets: -* -* RFP A RFP A -* -* 02 12 22 00 01 00 10 20 30 40 50 -* 03 13 23 33 11 33 11 21 31 41 51 -* 04 14 24 34 44 43 44 22 32 42 52 -* -* Reference -* ========= -* * ===================================================================== * * .. @@ -222,7 +300,7 @@ * .. * .. Local Scalars .. LOGICAL LOWER, LSIDE, MISODD, NISODD, NORMALTRANSR, - + NOTRANS + $ NOTRANS INTEGER M1, M2, N1, N2, K, INFO, I, J * .. * .. External Functions .. @@ -253,7 +331,7 @@ ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -4 ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) ) - + THEN + $ THEN INFO = -5 ELSE IF( M.LT.0 ) THEN INFO = -6 @@ -270,7 +348,7 @@ * Quick return when ( (N.EQ.0).OR.(M.EQ.0) ) * IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) - + RETURN + $ RETURN * * Quick return when ALPHA.EQ.(0D+0) * @@ -325,14 +403,14 @@ * IF( M.EQ.1 ) THEN CALL DTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA, - + A, M, B, LDB ) + $ A, M, B, LDB ) ELSE CALL DTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA, - + A( 0 ), M, B, LDB ) + $ A( 0 ), M, B, LDB ) CALL DGEMM( 'N', 'N', M2, N, M1, -ONE, A( M1 ), - + M, B, LDB, ALPHA, B( M1, 0 ), LDB ) + $ M, B, LDB, ALPHA, B( M1, 0 ), LDB ) CALL DTRSM( 'L', 'U', 'T', DIAG, M2, N, ONE, - + A( M ), M, B( M1, 0 ), LDB ) + $ A( M ), M, B( M1, 0 ), LDB ) END IF * ELSE @@ -342,14 +420,14 @@ * IF( M.EQ.1 ) THEN CALL DTRSM( 'L', 'L', 'T', DIAG, M1, N, ALPHA, - + A( 0 ), M, B, LDB ) + $ A( 0 ), M, B, LDB ) ELSE CALL DTRSM( 'L', 'U', 'N', DIAG, M2, N, ALPHA, - + A( M ), M, B( M1, 0 ), LDB ) + $ A( M ), M, B( M1, 0 ), LDB ) CALL DGEMM( 'T', 'N', M1, N, M2, -ONE, A( M1 ), - + M, B( M1, 0 ), LDB, ALPHA, B, LDB ) + $ M, B( M1, 0 ), LDB, ALPHA, B, LDB ) CALL DTRSM( 'L', 'L', 'T', DIAG, M1, N, ONE, - + A( 0 ), M, B, LDB ) + $ A( 0 ), M, B, LDB ) END IF * END IF @@ -364,11 +442,11 @@ * TRANS = 'N' * CALL DTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA, - + A( M2 ), M, B, LDB ) + $ A( M2 ), M, B, LDB ) CALL DGEMM( 'T', 'N', M2, N, M1, -ONE, A( 0 ), M, - + B, LDB, ALPHA, B( M1, 0 ), LDB ) + $ B, LDB, ALPHA, B( M1, 0 ), LDB ) CALL DTRSM( 'L', 'U', 'T', DIAG, M2, N, ONE, - + A( M1 ), M, B( M1, 0 ), LDB ) + $ A( M1 ), M, B( M1, 0 ), LDB ) * ELSE * @@ -376,11 +454,11 @@ * TRANS = 'T' * CALL DTRSM( 'L', 'U', 'N', DIAG, M2, N, ALPHA, - + A( M1 ), M, B( M1, 0 ), LDB ) + $ A( M1 ), M, B( M1, 0 ), LDB ) CALL DGEMM( 'N', 'N', M1, N, M2, -ONE, A( 0 ), M, - + B( M1, 0 ), LDB, ALPHA, B, LDB ) + $ B( M1, 0 ), LDB, ALPHA, B, LDB ) CALL DTRSM( 'L', 'L', 'T', DIAG, M1, N, ONE, - + A( M2 ), M, B, LDB ) + $ A( M2 ), M, B, LDB ) * END IF * @@ -401,15 +479,15 @@ * IF( M.EQ.1 ) THEN CALL DTRSM( 'L', 'U', 'T', DIAG, M1, N, ALPHA, - + A( 0 ), M1, B, LDB ) + $ A( 0 ), M1, B, LDB ) ELSE CALL DTRSM( 'L', 'U', 'T', DIAG, M1, N, ALPHA, - + A( 0 ), M1, B, LDB ) + $ A( 0 ), M1, B, LDB ) CALL DGEMM( 'T', 'N', M2, N, M1, -ONE, - + A( M1*M1 ), M1, B, LDB, ALPHA, - + B( M1, 0 ), LDB ) + $ A( M1*M1 ), M1, B, LDB, ALPHA, + $ B( M1, 0 ), LDB ) CALL DTRSM( 'L', 'L', 'N', DIAG, M2, N, ONE, - + A( 1 ), M1, B( M1, 0 ), LDB ) + $ A( 1 ), M1, B( M1, 0 ), LDB ) END IF * ELSE @@ -419,15 +497,15 @@ * IF( M.EQ.1 ) THEN CALL DTRSM( 'L', 'U', 'N', DIAG, M1, N, ALPHA, - + A( 0 ), M1, B, LDB ) + $ A( 0 ), M1, B, LDB ) ELSE CALL DTRSM( 'L', 'L', 'T', DIAG, M2, N, ALPHA, - + A( 1 ), M1, B( M1, 0 ), LDB ) + $ A( 1 ), M1, B( M1, 0 ), LDB ) CALL DGEMM( 'N', 'N', M1, N, M2, -ONE, - + A( M1*M1 ), M1, B( M1, 0 ), LDB, - + ALPHA, B, LDB ) + $ A( M1*M1 ), M1, B( M1, 0 ), LDB, + $ ALPHA, B, LDB ) CALL DTRSM( 'L', 'U', 'N', DIAG, M1, N, ONE, - + A( 0 ), M1, B, LDB ) + $ A( 0 ), M1, B, LDB ) END IF * END IF @@ -442,11 +520,11 @@ * TRANS = 'N' * CALL DTRSM( 'L', 'U', 'T', DIAG, M1, N, ALPHA, - + A( M2*M2 ), M2, B, LDB ) + $ A( M2*M2 ), M2, B, LDB ) CALL DGEMM( 'N', 'N', M2, N, M1, -ONE, A( 0 ), M2, - + B, LDB, ALPHA, B( M1, 0 ), LDB ) + $ B, LDB, ALPHA, B( M1, 0 ), LDB ) CALL DTRSM( 'L', 'L', 'N', DIAG, M2, N, ONE, - + A( M1*M2 ), M2, B( M1, 0 ), LDB ) + $ A( M1*M2 ), M2, B( M1, 0 ), LDB ) * ELSE * @@ -454,11 +532,11 @@ * TRANS = 'T' * CALL DTRSM( 'L', 'L', 'T', DIAG, M2, N, ALPHA, - + A( M1*M2 ), M2, B( M1, 0 ), LDB ) + $ A( M1*M2 ), M2, B( M1, 0 ), LDB ) CALL DGEMM( 'T', 'N', M1, N, M2, -ONE, A( 0 ), M2, - + B( M1, 0 ), LDB, ALPHA, B, LDB ) + $ B( M1, 0 ), LDB, ALPHA, B, LDB ) CALL DTRSM( 'L', 'U', 'N', DIAG, M1, N, ONE, - + A( M2*M2 ), M2, B, LDB ) + $ A( M2*M2 ), M2, B, LDB ) * END IF * @@ -484,11 +562,11 @@ * and TRANS = 'N' * CALL DTRSM( 'L', 'L', 'N', DIAG, K, N, ALPHA, - + A( 1 ), M+1, B, LDB ) + $ A( 1 ), M+1, B, LDB ) CALL DGEMM( 'N', 'N', K, N, K, -ONE, A( K+1 ), - + M+1, B, LDB, ALPHA, B( K, 0 ), LDB ) + $ M+1, B, LDB, ALPHA, B( K, 0 ), LDB ) CALL DTRSM( 'L', 'U', 'T', DIAG, K, N, ONE, - + A( 0 ), M+1, B( K, 0 ), LDB ) + $ A( 0 ), M+1, B( K, 0 ), LDB ) * ELSE * @@ -496,11 +574,11 @@ * and TRANS = 'T' * CALL DTRSM( 'L', 'U', 'N', DIAG, K, N, ALPHA, - + A( 0 ), M+1, B( K, 0 ), LDB ) + $ A( 0 ), M+1, B( K, 0 ), LDB ) CALL DGEMM( 'T', 'N', K, N, K, -ONE, A( K+1 ), - + M+1, B( K, 0 ), LDB, ALPHA, B, LDB ) + $ M+1, B( K, 0 ), LDB, ALPHA, B, LDB ) CALL DTRSM( 'L', 'L', 'T', DIAG, K, N, ONE, - + A( 1 ), M+1, B, LDB ) + $ A( 1 ), M+1, B, LDB ) * END IF * @@ -514,22 +592,22 @@ * and TRANS = 'N' * CALL DTRSM( 'L', 'L', 'N', DIAG, K, N, ALPHA, - + A( K+1 ), M+1, B, LDB ) + $ A( K+1 ), M+1, B, LDB ) CALL DGEMM( 'T', 'N', K, N, K, -ONE, A( 0 ), M+1, - + B, LDB, ALPHA, B( K, 0 ), LDB ) + $ B, LDB, ALPHA, B( K, 0 ), LDB ) CALL DTRSM( 'L', 'U', 'T', DIAG, K, N, ONE, - + A( K ), M+1, B( K, 0 ), LDB ) + $ A( K ), M+1, B( K, 0 ), LDB ) * ELSE * * SIDE ='L', N is even, TRANSR = 'N', UPLO = 'U', * and TRANS = 'T' CALL DTRSM( 'L', 'U', 'N', DIAG, K, N, ALPHA, - + A( K ), M+1, B( K, 0 ), LDB ) + $ A( K ), M+1, B( K, 0 ), LDB ) CALL DGEMM( 'N', 'N', K, N, K, -ONE, A( 0 ), M+1, - + B( K, 0 ), LDB, ALPHA, B, LDB ) + $ B( K, 0 ), LDB, ALPHA, B, LDB ) CALL DTRSM( 'L', 'L', 'T', DIAG, K, N, ONE, - + A( K+1 ), M+1, B, LDB ) + $ A( K+1 ), M+1, B, LDB ) * END IF * @@ -549,12 +627,12 @@ * and TRANS = 'N' * CALL DTRSM( 'L', 'U', 'T', DIAG, K, N, ALPHA, - + A( K ), K, B, LDB ) + $ A( K ), K, B, LDB ) CALL DGEMM( 'T', 'N', K, N, K, -ONE, - + A( K*( K+1 ) ), K, B, LDB, ALPHA, - + B( K, 0 ), LDB ) + $ A( K*( K+1 ) ), K, B, LDB, ALPHA, + $ B( K, 0 ), LDB ) CALL DTRSM( 'L', 'L', 'N', DIAG, K, N, ONE, - + A( 0 ), K, B( K, 0 ), LDB ) + $ A( 0 ), K, B( K, 0 ), LDB ) * ELSE * @@ -562,12 +640,12 @@ * and TRANS = 'T' * CALL DTRSM( 'L', 'L', 'T', DIAG, K, N, ALPHA, - + A( 0 ), K, B( K, 0 ), LDB ) + $ A( 0 ), K, B( K, 0 ), LDB ) CALL DGEMM( 'N', 'N', K, N, K, -ONE, - + A( K*( K+1 ) ), K, B( K, 0 ), LDB, - + ALPHA, B, LDB ) + $ A( K*( K+1 ) ), K, B( K, 0 ), LDB, + $ ALPHA, B, LDB ) CALL DTRSM( 'L', 'U', 'N', DIAG, K, N, ONE, - + A( K ), K, B, LDB ) + $ A( K ), K, B, LDB ) * END IF * @@ -581,11 +659,11 @@ * and TRANS = 'N' * CALL DTRSM( 'L', 'U', 'T', DIAG, K, N, ALPHA, - + A( K*( K+1 ) ), K, B, LDB ) + $ A( K*( K+1 ) ), K, B, LDB ) CALL DGEMM( 'N', 'N', K, N, K, -ONE, A( 0 ), K, B, - + LDB, ALPHA, B( K, 0 ), LDB ) + $ LDB, ALPHA, B( K, 0 ), LDB ) CALL DTRSM( 'L', 'L', 'N', DIAG, K, N, ONE, - + A( K*K ), K, B( K, 0 ), LDB ) + $ A( K*K ), K, B( K, 0 ), LDB ) * ELSE * @@ -593,11 +671,11 @@ * and TRANS = 'T' * CALL DTRSM( 'L', 'L', 'T', DIAG, K, N, ALPHA, - + A( K*K ), K, B( K, 0 ), LDB ) + $ A( K*K ), K, B( K, 0 ), LDB ) CALL DGEMM( 'T', 'N', K, N, K, -ONE, A( 0 ), K, - + B( K, 0 ), LDB, ALPHA, B, LDB ) + $ B( K, 0 ), LDB, ALPHA, B, LDB ) CALL DTRSM( 'L', 'U', 'N', DIAG, K, N, ONE, - + A( K*( K+1 ) ), K, B, LDB ) + $ A( K*( K+1 ) ), K, B, LDB ) * END IF * @@ -647,12 +725,12 @@ * TRANS = 'N' * CALL DTRSM( 'R', 'U', 'T', DIAG, M, N2, ALPHA, - + A( N ), N, B( 0, N1 ), LDB ) + $ A( N ), N, B( 0, N1 ), LDB ) CALL DGEMM( 'N', 'N', M, N1, N2, -ONE, B( 0, N1 ), - + LDB, A( N1 ), N, ALPHA, B( 0, 0 ), - + LDB ) + $ LDB, A( N1 ), N, ALPHA, B( 0, 0 ), + $ LDB ) CALL DTRSM( 'R', 'L', 'N', DIAG, M, N1, ONE, - + A( 0 ), N, B( 0, 0 ), LDB ) + $ A( 0 ), N, B( 0, 0 ), LDB ) * ELSE * @@ -660,12 +738,12 @@ * TRANS = 'T' * CALL DTRSM( 'R', 'L', 'T', DIAG, M, N1, ALPHA, - + A( 0 ), N, B( 0, 0 ), LDB ) + $ A( 0 ), N, B( 0, 0 ), LDB ) CALL DGEMM( 'N', 'T', M, N2, N1, -ONE, B( 0, 0 ), - + LDB, A( N1 ), N, ALPHA, B( 0, N1 ), - + LDB ) + $ LDB, A( N1 ), N, ALPHA, B( 0, N1 ), + $ LDB ) CALL DTRSM( 'R', 'U', 'N', DIAG, M, N2, ONE, - + A( N ), N, B( 0, N1 ), LDB ) + $ A( N ), N, B( 0, N1 ), LDB ) * END IF * @@ -679,12 +757,12 @@ * TRANS = 'N' * CALL DTRSM( 'R', 'L', 'T', DIAG, M, N1, ALPHA, - + A( N2 ), N, B( 0, 0 ), LDB ) + $ A( N2 ), N, B( 0, 0 ), LDB ) CALL DGEMM( 'N', 'N', M, N2, N1, -ONE, B( 0, 0 ), - + LDB, A( 0 ), N, ALPHA, B( 0, N1 ), - + LDB ) + $ LDB, A( 0 ), N, ALPHA, B( 0, N1 ), + $ LDB ) CALL DTRSM( 'R', 'U', 'N', DIAG, M, N2, ONE, - + A( N1 ), N, B( 0, N1 ), LDB ) + $ A( N1 ), N, B( 0, N1 ), LDB ) * ELSE * @@ -692,11 +770,11 @@ * TRANS = 'T' * CALL DTRSM( 'R', 'U', 'T', DIAG, M, N2, ALPHA, - + A( N1 ), N, B( 0, N1 ), LDB ) + $ A( N1 ), N, B( 0, N1 ), LDB ) CALL DGEMM( 'N', 'T', M, N1, N2, -ONE, B( 0, N1 ), - + LDB, A( 0 ), N, ALPHA, B( 0, 0 ), LDB ) + $ LDB, A( 0 ), N, ALPHA, B( 0, 0 ), LDB ) CALL DTRSM( 'R', 'L', 'N', DIAG, M, N1, ONE, - + A( N2 ), N, B( 0, 0 ), LDB ) + $ A( N2 ), N, B( 0, 0 ), LDB ) * END IF * @@ -716,12 +794,12 @@ * TRANS = 'N' * CALL DTRSM( 'R', 'L', 'N', DIAG, M, N2, ALPHA, - + A( 1 ), N1, B( 0, N1 ), LDB ) + $ A( 1 ), N1, B( 0, N1 ), LDB ) CALL DGEMM( 'N', 'T', M, N1, N2, -ONE, B( 0, N1 ), - + LDB, A( N1*N1 ), N1, ALPHA, B( 0, 0 ), - + LDB ) + $ LDB, A( N1*N1 ), N1, ALPHA, B( 0, 0 ), + $ LDB ) CALL DTRSM( 'R', 'U', 'T', DIAG, M, N1, ONE, - + A( 0 ), N1, B( 0, 0 ), LDB ) + $ A( 0 ), N1, B( 0, 0 ), LDB ) * ELSE * @@ -729,12 +807,12 @@ * TRANS = 'T' * CALL DTRSM( 'R', 'U', 'N', DIAG, M, N1, ALPHA, - + A( 0 ), N1, B( 0, 0 ), LDB ) + $ A( 0 ), N1, B( 0, 0 ), LDB ) CALL DGEMM( 'N', 'N', M, N2, N1, -ONE, B( 0, 0 ), - + LDB, A( N1*N1 ), N1, ALPHA, B( 0, N1 ), - + LDB ) + $ LDB, A( N1*N1 ), N1, ALPHA, B( 0, N1 ), + $ LDB ) CALL DTRSM( 'R', 'L', 'T', DIAG, M, N2, ONE, - + A( 1 ), N1, B( 0, N1 ), LDB ) + $ A( 1 ), N1, B( 0, N1 ), LDB ) * END IF * @@ -748,12 +826,12 @@ * TRANS = 'N' * CALL DTRSM( 'R', 'U', 'N', DIAG, M, N1, ALPHA, - + A( N2*N2 ), N2, B( 0, 0 ), LDB ) + $ A( N2*N2 ), N2, B( 0, 0 ), LDB ) CALL DGEMM( 'N', 'T', M, N2, N1, -ONE, B( 0, 0 ), - + LDB, A( 0 ), N2, ALPHA, B( 0, N1 ), - + LDB ) + $ LDB, A( 0 ), N2, ALPHA, B( 0, N1 ), + $ LDB ) CALL DTRSM( 'R', 'L', 'T', DIAG, M, N2, ONE, - + A( N1*N2 ), N2, B( 0, N1 ), LDB ) + $ A( N1*N2 ), N2, B( 0, N1 ), LDB ) * ELSE * @@ -761,12 +839,12 @@ * TRANS = 'T' * CALL DTRSM( 'R', 'L', 'N', DIAG, M, N2, ALPHA, - + A( N1*N2 ), N2, B( 0, N1 ), LDB ) + $ A( N1*N2 ), N2, B( 0, N1 ), LDB ) CALL DGEMM( 'N', 'N', M, N1, N2, -ONE, B( 0, N1 ), - + LDB, A( 0 ), N2, ALPHA, B( 0, 0 ), - + LDB ) + $ LDB, A( 0 ), N2, ALPHA, B( 0, 0 ), + $ LDB ) CALL DTRSM( 'R', 'U', 'T', DIAG, M, N1, ONE, - + A( N2*N2 ), N2, B( 0, 0 ), LDB ) + $ A( N2*N2 ), N2, B( 0, 0 ), LDB ) * END IF * @@ -792,12 +870,12 @@ * and TRANS = 'N' * CALL DTRSM( 'R', 'U', 'T', DIAG, M, K, ALPHA, - + A( 0 ), N+1, B( 0, K ), LDB ) + $ A( 0 ), N+1, B( 0, K ), LDB ) CALL DGEMM( 'N', 'N', M, K, K, -ONE, B( 0, K ), - + LDB, A( K+1 ), N+1, ALPHA, B( 0, 0 ), - + LDB ) + $ LDB, A( K+1 ), N+1, ALPHA, B( 0, 0 ), + $ LDB ) CALL DTRSM( 'R', 'L', 'N', DIAG, M, K, ONE, - + A( 1 ), N+1, B( 0, 0 ), LDB ) + $ A( 1 ), N+1, B( 0, 0 ), LDB ) * ELSE * @@ -805,12 +883,12 @@ * and TRANS = 'T' * CALL DTRSM( 'R', 'L', 'T', DIAG, M, K, ALPHA, - + A( 1 ), N+1, B( 0, 0 ), LDB ) + $ A( 1 ), N+1, B( 0, 0 ), LDB ) CALL DGEMM( 'N', 'T', M, K, K, -ONE, B( 0, 0 ), - + LDB, A( K+1 ), N+1, ALPHA, B( 0, K ), - + LDB ) + $ LDB, A( K+1 ), N+1, ALPHA, B( 0, K ), + $ LDB ) CALL DTRSM( 'R', 'U', 'N', DIAG, M, K, ONE, - + A( 0 ), N+1, B( 0, K ), LDB ) + $ A( 0 ), N+1, B( 0, K ), LDB ) * END IF * @@ -824,12 +902,12 @@ * and TRANS = 'N' * CALL DTRSM( 'R', 'L', 'T', DIAG, M, K, ALPHA, - + A( K+1 ), N+1, B( 0, 0 ), LDB ) + $ A( K+1 ), N+1, B( 0, 0 ), LDB ) CALL DGEMM( 'N', 'N', M, K, K, -ONE, B( 0, 0 ), - + LDB, A( 0 ), N+1, ALPHA, B( 0, K ), - + LDB ) + $ LDB, A( 0 ), N+1, ALPHA, B( 0, K ), + $ LDB ) CALL DTRSM( 'R', 'U', 'N', DIAG, M, K, ONE, - + A( K ), N+1, B( 0, K ), LDB ) + $ A( K ), N+1, B( 0, K ), LDB ) * ELSE * @@ -837,12 +915,12 @@ * and TRANS = 'T' * CALL DTRSM( 'R', 'U', 'T', DIAG, M, K, ALPHA, - + A( K ), N+1, B( 0, K ), LDB ) + $ A( K ), N+1, B( 0, K ), LDB ) CALL DGEMM( 'N', 'T', M, K, K, -ONE, B( 0, K ), - + LDB, A( 0 ), N+1, ALPHA, B( 0, 0 ), - + LDB ) + $ LDB, A( 0 ), N+1, ALPHA, B( 0, 0 ), + $ LDB ) CALL DTRSM( 'R', 'L', 'N', DIAG, M, K, ONE, - + A( K+1 ), N+1, B( 0, 0 ), LDB ) + $ A( K+1 ), N+1, B( 0, 0 ), LDB ) * END IF * @@ -862,12 +940,12 @@ * and TRANS = 'N' * CALL DTRSM( 'R', 'L', 'N', DIAG, M, K, ALPHA, - + A( 0 ), K, B( 0, K ), LDB ) + $ A( 0 ), K, B( 0, K ), LDB ) CALL DGEMM( 'N', 'T', M, K, K, -ONE, B( 0, K ), - + LDB, A( ( K+1 )*K ), K, ALPHA, - + B( 0, 0 ), LDB ) + $ LDB, A( ( K+1 )*K ), K, ALPHA, + $ B( 0, 0 ), LDB ) CALL DTRSM( 'R', 'U', 'T', DIAG, M, K, ONE, - + A( K ), K, B( 0, 0 ), LDB ) + $ A( K ), K, B( 0, 0 ), LDB ) * ELSE * @@ -875,12 +953,12 @@ * and TRANS = 'T' * CALL DTRSM( 'R', 'U', 'N', DIAG, M, K, ALPHA, - + A( K ), K, B( 0, 0 ), LDB ) + $ A( K ), K, B( 0, 0 ), LDB ) CALL DGEMM( 'N', 'N', M, K, K, -ONE, B( 0, 0 ), - + LDB, A( ( K+1 )*K ), K, ALPHA, - + B( 0, K ), LDB ) + $ LDB, A( ( K+1 )*K ), K, ALPHA, + $ B( 0, K ), LDB ) CALL DTRSM( 'R', 'L', 'T', DIAG, M, K, ONE, - + A( 0 ), K, B( 0, K ), LDB ) + $ A( 0 ), K, B( 0, K ), LDB ) * END IF * @@ -894,11 +972,11 @@ * and TRANS = 'N' * CALL DTRSM( 'R', 'U', 'N', DIAG, M, K, ALPHA, - + A( ( K+1 )*K ), K, B( 0, 0 ), LDB ) + $ A( ( K+1 )*K ), K, B( 0, 0 ), LDB ) CALL DGEMM( 'N', 'T', M, K, K, -ONE, B( 0, 0 ), - + LDB, A( 0 ), K, ALPHA, B( 0, K ), LDB ) + $ LDB, A( 0 ), K, ALPHA, B( 0, K ), LDB ) CALL DTRSM( 'R', 'L', 'T', DIAG, M, K, ONE, - + A( K*K ), K, B( 0, K ), LDB ) + $ A( K*K ), K, B( 0, K ), LDB ) * ELSE * @@ -906,11 +984,11 @@ * and TRANS = 'T' * CALL DTRSM( 'R', 'L', 'N', DIAG, M, K, ALPHA, - + A( K*K ), K, B( 0, K ), LDB ) + $ A( K*K ), K, B( 0, K ), LDB ) CALL DGEMM( 'N', 'N', M, K, K, -ONE, B( 0, K ), - + LDB, A( 0 ), K, ALPHA, B( 0, 0 ), LDB ) + $ LDB, A( 0 ), K, ALPHA, B( 0, 0 ), LDB ) CALL DTRSM( 'R', 'U', 'T', DIAG, M, K, ONE, - + A( ( K+1 )*K ), K, B( 0, 0 ), LDB ) + $ A( ( K+1 )*K ), K, B( 0, 0 ), LDB ) * END IF *