File:  [local] / rpl / lapack / lapack / dtbrfs.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:12 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
    2:      $                   LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.3.1) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *  -- April 2011                                                      --
    8: *
    9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          DIAG, TRANS, UPLO
   13:       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   AB( LDAB, * ), B( LDB, * ), BERR( * ),
   18:      $                   FERR( * ), WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DTBRFS provides error bounds and backward error estimates for the
   25: *  solution to a system of linear equations with a triangular band
   26: *  coefficient matrix.
   27: *
   28: *  The solution matrix X must be computed by DTBTRS or some other
   29: *  means before entering this routine.  DTBRFS does not do iterative
   30: *  refinement because doing so cannot improve the backward error.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  UPLO    (input) CHARACTER*1
   36: *          = 'U':  A is upper triangular;
   37: *          = 'L':  A is lower triangular.
   38: *
   39: *  TRANS   (input) CHARACTER*1
   40: *          Specifies the form of the system of equations:
   41: *          = 'N':  A * X = B  (No transpose)
   42: *          = 'T':  A**T * X = B  (Transpose)
   43: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   44: *
   45: *  DIAG    (input) CHARACTER*1
   46: *          = 'N':  A is non-unit triangular;
   47: *          = 'U':  A is unit triangular.
   48: *
   49: *  N       (input) INTEGER
   50: *          The order of the matrix A.  N >= 0.
   51: *
   52: *  KD      (input) INTEGER
   53: *          The number of superdiagonals or subdiagonals of the
   54: *          triangular band matrix A.  KD >= 0.
   55: *
   56: *  NRHS    (input) INTEGER
   57: *          The number of right hand sides, i.e., the number of columns
   58: *          of the matrices B and X.  NRHS >= 0.
   59: *
   60: *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
   61: *          The upper or lower triangular band matrix A, stored in the
   62: *          first kd+1 rows of the array. The j-th column of A is stored
   63: *          in the j-th column of the array AB as follows:
   64: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   65: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   66: *          If DIAG = 'U', the diagonal elements of A are not referenced
   67: *          and are assumed to be 1.
   68: *
   69: *  LDAB    (input) INTEGER
   70: *          The leading dimension of the array AB.  LDAB >= KD+1.
   71: *
   72: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   73: *          The right hand side matrix B.
   74: *
   75: *  LDB     (input) INTEGER
   76: *          The leading dimension of the array B.  LDB >= max(1,N).
   77: *
   78: *  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
   79: *          The solution matrix X.
   80: *
   81: *  LDX     (input) INTEGER
   82: *          The leading dimension of the array X.  LDX >= max(1,N).
   83: *
   84: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   85: *          The estimated forward error bound for each solution vector
   86: *          X(j) (the j-th column of the solution matrix X).
   87: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   88: *          is an estimated upper bound for the magnitude of the largest
   89: *          element in (X(j) - XTRUE) divided by the magnitude of the
   90: *          largest element in X(j).  The estimate is as reliable as
   91: *          the estimate for RCOND, and is almost always a slight
   92: *          overestimate of the true error.
   93: *
   94: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   95: *          The componentwise relative backward error of each solution
   96: *          vector X(j) (i.e., the smallest relative change in
   97: *          any element of A or B that makes X(j) an exact solution).
   98: *
   99: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
  100: *
  101: *  IWORK   (workspace) INTEGER array, dimension (N)
  102: *
  103: *  INFO    (output) INTEGER
  104: *          = 0:  successful exit
  105: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  106: *
  107: *  =====================================================================
  108: *
  109: *     .. Parameters ..
  110:       DOUBLE PRECISION   ZERO
  111:       PARAMETER          ( ZERO = 0.0D+0 )
  112:       DOUBLE PRECISION   ONE
  113:       PARAMETER          ( ONE = 1.0D+0 )
  114: *     ..
  115: *     .. Local Scalars ..
  116:       LOGICAL            NOTRAN, NOUNIT, UPPER
  117:       CHARACTER          TRANST
  118:       INTEGER            I, J, K, KASE, NZ
  119:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  120: *     ..
  121: *     .. Local Arrays ..
  122:       INTEGER            ISAVE( 3 )
  123: *     ..
  124: *     .. External Subroutines ..
  125:       EXTERNAL           DAXPY, DCOPY, DLACN2, DTBMV, DTBSV, XERBLA
  126: *     ..
  127: *     .. Intrinsic Functions ..
  128:       INTRINSIC          ABS, MAX, MIN
  129: *     ..
  130: *     .. External Functions ..
  131:       LOGICAL            LSAME
  132:       DOUBLE PRECISION   DLAMCH
  133:       EXTERNAL           LSAME, DLAMCH
  134: *     ..
  135: *     .. Executable Statements ..
  136: *
  137: *     Test the input parameters.
  138: *
  139:       INFO = 0
  140:       UPPER = LSAME( UPLO, 'U' )
  141:       NOTRAN = LSAME( TRANS, 'N' )
  142:       NOUNIT = LSAME( DIAG, 'N' )
  143: *
  144:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  145:          INFO = -1
  146:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  147:      $         LSAME( TRANS, 'C' ) ) THEN
  148:          INFO = -2
  149:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  150:          INFO = -3
  151:       ELSE IF( N.LT.0 ) THEN
  152:          INFO = -4
  153:       ELSE IF( KD.LT.0 ) THEN
  154:          INFO = -5
  155:       ELSE IF( NRHS.LT.0 ) THEN
  156:          INFO = -6
  157:       ELSE IF( LDAB.LT.KD+1 ) THEN
  158:          INFO = -8
  159:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  160:          INFO = -10
  161:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  162:          INFO = -12
  163:       END IF
  164:       IF( INFO.NE.0 ) THEN
  165:          CALL XERBLA( 'DTBRFS', -INFO )
  166:          RETURN
  167:       END IF
  168: *
  169: *     Quick return if possible
  170: *
  171:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  172:          DO 10 J = 1, NRHS
  173:             FERR( J ) = ZERO
  174:             BERR( J ) = ZERO
  175:    10    CONTINUE
  176:          RETURN
  177:       END IF
  178: *
  179:       IF( NOTRAN ) THEN
  180:          TRANST = 'T'
  181:       ELSE
  182:          TRANST = 'N'
  183:       END IF
  184: *
  185: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  186: *
  187:       NZ = KD + 2
  188:       EPS = DLAMCH( 'Epsilon' )
  189:       SAFMIN = DLAMCH( 'Safe minimum' )
  190:       SAFE1 = NZ*SAFMIN
  191:       SAFE2 = SAFE1 / EPS
  192: *
  193: *     Do for each right hand side
  194: *
  195:       DO 250 J = 1, NRHS
  196: *
  197: *        Compute residual R = B - op(A) * X,
  198: *        where op(A) = A or A**T, depending on TRANS.
  199: *
  200:          CALL DCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
  201:          CALL DTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK( N+1 ),
  202:      $               1 )
  203:          CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
  204: *
  205: *        Compute componentwise relative backward error from formula
  206: *
  207: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  208: *
  209: *        where abs(Z) is the componentwise absolute value of the matrix
  210: *        or vector Z.  If the i-th component of the denominator is less
  211: *        than SAFE2, then SAFE1 is added to the i-th components of the
  212: *        numerator and denominator before dividing.
  213: *
  214:          DO 20 I = 1, N
  215:             WORK( I ) = ABS( B( I, J ) )
  216:    20    CONTINUE
  217: *
  218:          IF( NOTRAN ) THEN
  219: *
  220: *           Compute abs(A)*abs(X) + abs(B).
  221: *
  222:             IF( UPPER ) THEN
  223:                IF( NOUNIT ) THEN
  224:                   DO 40 K = 1, N
  225:                      XK = ABS( X( K, J ) )
  226:                      DO 30 I = MAX( 1, K-KD ), K
  227:                         WORK( I ) = WORK( I ) +
  228:      $                              ABS( AB( KD+1+I-K, K ) )*XK
  229:    30                CONTINUE
  230:    40             CONTINUE
  231:                ELSE
  232:                   DO 60 K = 1, N
  233:                      XK = ABS( X( K, J ) )
  234:                      DO 50 I = MAX( 1, K-KD ), K - 1
  235:                         WORK( I ) = WORK( I ) +
  236:      $                              ABS( AB( KD+1+I-K, K ) )*XK
  237:    50                CONTINUE
  238:                      WORK( K ) = WORK( K ) + XK
  239:    60             CONTINUE
  240:                END IF
  241:             ELSE
  242:                IF( NOUNIT ) THEN
  243:                   DO 80 K = 1, N
  244:                      XK = ABS( X( K, J ) )
  245:                      DO 70 I = K, MIN( N, K+KD )
  246:                         WORK( I ) = WORK( I ) + ABS( AB( 1+I-K, K ) )*XK
  247:    70                CONTINUE
  248:    80             CONTINUE
  249:                ELSE
  250:                   DO 100 K = 1, N
  251:                      XK = ABS( X( K, J ) )
  252:                      DO 90 I = K + 1, MIN( N, K+KD )
  253:                         WORK( I ) = WORK( I ) + ABS( AB( 1+I-K, K ) )*XK
  254:    90                CONTINUE
  255:                      WORK( K ) = WORK( K ) + XK
  256:   100             CONTINUE
  257:                END IF
  258:             END IF
  259:          ELSE
  260: *
  261: *           Compute abs(A**T)*abs(X) + abs(B).
  262: *
  263:             IF( UPPER ) THEN
  264:                IF( NOUNIT ) THEN
  265:                   DO 120 K = 1, N
  266:                      S = ZERO
  267:                      DO 110 I = MAX( 1, K-KD ), K
  268:                         S = S + ABS( AB( KD+1+I-K, K ) )*
  269:      $                      ABS( X( I, J ) )
  270:   110                CONTINUE
  271:                      WORK( K ) = WORK( K ) + S
  272:   120             CONTINUE
  273:                ELSE
  274:                   DO 140 K = 1, N
  275:                      S = ABS( X( K, J ) )
  276:                      DO 130 I = MAX( 1, K-KD ), K - 1
  277:                         S = S + ABS( AB( KD+1+I-K, K ) )*
  278:      $                      ABS( X( I, J ) )
  279:   130                CONTINUE
  280:                      WORK( K ) = WORK( K ) + S
  281:   140             CONTINUE
  282:                END IF
  283:             ELSE
  284:                IF( NOUNIT ) THEN
  285:                   DO 160 K = 1, N
  286:                      S = ZERO
  287:                      DO 150 I = K, MIN( N, K+KD )
  288:                         S = S + ABS( AB( 1+I-K, K ) )*ABS( X( I, J ) )
  289:   150                CONTINUE
  290:                      WORK( K ) = WORK( K ) + S
  291:   160             CONTINUE
  292:                ELSE
  293:                   DO 180 K = 1, N
  294:                      S = ABS( X( K, J ) )
  295:                      DO 170 I = K + 1, MIN( N, K+KD )
  296:                         S = S + ABS( AB( 1+I-K, K ) )*ABS( X( I, J ) )
  297:   170                CONTINUE
  298:                      WORK( K ) = WORK( K ) + S
  299:   180             CONTINUE
  300:                END IF
  301:             END IF
  302:          END IF
  303:          S = ZERO
  304:          DO 190 I = 1, N
  305:             IF( WORK( I ).GT.SAFE2 ) THEN
  306:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  307:             ELSE
  308:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  309:      $             ( WORK( I )+SAFE1 ) )
  310:             END IF
  311:   190    CONTINUE
  312:          BERR( J ) = S
  313: *
  314: *        Bound error from formula
  315: *
  316: *        norm(X - XTRUE) / norm(X) .le. FERR =
  317: *        norm( abs(inv(op(A)))*
  318: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  319: *
  320: *        where
  321: *          norm(Z) is the magnitude of the largest component of Z
  322: *          inv(op(A)) is the inverse of op(A)
  323: *          abs(Z) is the componentwise absolute value of the matrix or
  324: *             vector Z
  325: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  326: *          EPS is machine epsilon
  327: *
  328: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  329: *        is incremented by SAFE1 if the i-th component of
  330: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  331: *
  332: *        Use DLACN2 to estimate the infinity-norm of the matrix
  333: *           inv(op(A)) * diag(W),
  334: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  335: *
  336:          DO 200 I = 1, N
  337:             IF( WORK( I ).GT.SAFE2 ) THEN
  338:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  339:             ELSE
  340:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  341:             END IF
  342:   200    CONTINUE
  343: *
  344:          KASE = 0
  345:   210    CONTINUE
  346:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  347:      $                KASE, ISAVE )
  348:          IF( KASE.NE.0 ) THEN
  349:             IF( KASE.EQ.1 ) THEN
  350: *
  351: *              Multiply by diag(W)*inv(op(A)**T).
  352: *
  353:                CALL DTBSV( UPLO, TRANST, DIAG, N, KD, AB, LDAB,
  354:      $                     WORK( N+1 ), 1 )
  355:                DO 220 I = 1, N
  356:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  357:   220          CONTINUE
  358:             ELSE
  359: *
  360: *              Multiply by inv(op(A))*diag(W).
  361: *
  362:                DO 230 I = 1, N
  363:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  364:   230          CONTINUE
  365:                CALL DTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB,
  366:      $                     WORK( N+1 ), 1 )
  367:             END IF
  368:             GO TO 210
  369:          END IF
  370: *
  371: *        Normalize error.
  372: *
  373:          LSTRES = ZERO
  374:          DO 240 I = 1, N
  375:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  376:   240    CONTINUE
  377:          IF( LSTRES.NE.ZERO )
  378:      $      FERR( J ) = FERR( J ) / LSTRES
  379: *
  380:   250 CONTINUE
  381: *
  382:       RETURN
  383: *
  384: *     End of DTBRFS
  385: *
  386:       END

CVSweb interface <joel.bertrand@systella.fr>