File:  [local] / rpl / lapack / lapack / dtbrfs.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:36 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b DTBRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTBRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtbrfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtbrfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtbrfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
   22: *                          LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, TRANS, UPLO
   26: *       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   AB( LDAB, * ), B( LDB, * ), BERR( * ),
   31: *      $                   FERR( * ), WORK( * ), X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DTBRFS provides error bounds and backward error estimates for the
   41: *> solution to a system of linear equations with a triangular band
   42: *> coefficient matrix.
   43: *>
   44: *> The solution matrix X must be computed by DTBTRS or some other
   45: *> means before entering this routine.  DTBRFS does not do iterative
   46: *> refinement because doing so cannot improve the backward error.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] UPLO
   53: *> \verbatim
   54: *>          UPLO is CHARACTER*1
   55: *>          = 'U':  A is upper triangular;
   56: *>          = 'L':  A is lower triangular.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] TRANS
   60: *> \verbatim
   61: *>          TRANS is CHARACTER*1
   62: *>          Specifies the form of the system of equations:
   63: *>          = 'N':  A * X = B  (No transpose)
   64: *>          = 'T':  A**T * X = B  (Transpose)
   65: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   66: *> \endverbatim
   67: *>
   68: *> \param[in] DIAG
   69: *> \verbatim
   70: *>          DIAG is CHARACTER*1
   71: *>          = 'N':  A is non-unit triangular;
   72: *>          = 'U':  A is unit triangular.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>          The order of the matrix A.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] KD
   82: *> \verbatim
   83: *>          KD is INTEGER
   84: *>          The number of superdiagonals or subdiagonals of the
   85: *>          triangular band matrix A.  KD >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] NRHS
   89: *> \verbatim
   90: *>          NRHS is INTEGER
   91: *>          The number of right hand sides, i.e., the number of columns
   92: *>          of the matrices B and X.  NRHS >= 0.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] AB
   96: *> \verbatim
   97: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
   98: *>          The upper or lower triangular band matrix A, stored in the
   99: *>          first kd+1 rows of the array. The j-th column of A is stored
  100: *>          in the j-th column of the array AB as follows:
  101: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  102: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
  103: *>          If DIAG = 'U', the diagonal elements of A are not referenced
  104: *>          and are assumed to be 1.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDAB
  108: *> \verbatim
  109: *>          LDAB is INTEGER
  110: *>          The leading dimension of the array AB.  LDAB >= KD+1.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] B
  114: *> \verbatim
  115: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  116: *>          The right hand side matrix B.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDB
  120: *> \verbatim
  121: *>          LDB is INTEGER
  122: *>          The leading dimension of the array B.  LDB >= max(1,N).
  123: *> \endverbatim
  124: *>
  125: *> \param[in] X
  126: *> \verbatim
  127: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  128: *>          The solution matrix X.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDX
  132: *> \verbatim
  133: *>          LDX is INTEGER
  134: *>          The leading dimension of the array X.  LDX >= max(1,N).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] FERR
  138: *> \verbatim
  139: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  140: *>          The estimated forward error bound for each solution vector
  141: *>          X(j) (the j-th column of the solution matrix X).
  142: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  143: *>          is an estimated upper bound for the magnitude of the largest
  144: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  145: *>          largest element in X(j).  The estimate is as reliable as
  146: *>          the estimate for RCOND, and is almost always a slight
  147: *>          overestimate of the true error.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] BERR
  151: *> \verbatim
  152: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  153: *>          The componentwise relative backward error of each solution
  154: *>          vector X(j) (i.e., the smallest relative change in
  155: *>          any element of A or B that makes X(j) an exact solution).
  156: *> \endverbatim
  157: *>
  158: *> \param[out] WORK
  159: *> \verbatim
  160: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  161: *> \endverbatim
  162: *>
  163: *> \param[out] IWORK
  164: *> \verbatim
  165: *>          IWORK is INTEGER array, dimension (N)
  166: *> \endverbatim
  167: *>
  168: *> \param[out] INFO
  169: *> \verbatim
  170: *>          INFO is INTEGER
  171: *>          = 0:  successful exit
  172: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  173: *> \endverbatim
  174: *
  175: *  Authors:
  176: *  ========
  177: *
  178: *> \author Univ. of Tennessee
  179: *> \author Univ. of California Berkeley
  180: *> \author Univ. of Colorado Denver
  181: *> \author NAG Ltd.
  182: *
  183: *> \date December 2016
  184: *
  185: *> \ingroup doubleOTHERcomputational
  186: *
  187: *  =====================================================================
  188:       SUBROUTINE DTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
  189:      $                   LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  190: *
  191: *  -- LAPACK computational routine (version 3.7.0) --
  192: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  193: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  194: *     December 2016
  195: *
  196: *     .. Scalar Arguments ..
  197:       CHARACTER          DIAG, TRANS, UPLO
  198:       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
  199: *     ..
  200: *     .. Array Arguments ..
  201:       INTEGER            IWORK( * )
  202:       DOUBLE PRECISION   AB( LDAB, * ), B( LDB, * ), BERR( * ),
  203:      $                   FERR( * ), WORK( * ), X( LDX, * )
  204: *     ..
  205: *
  206: *  =====================================================================
  207: *
  208: *     .. Parameters ..
  209:       DOUBLE PRECISION   ZERO
  210:       PARAMETER          ( ZERO = 0.0D+0 )
  211:       DOUBLE PRECISION   ONE
  212:       PARAMETER          ( ONE = 1.0D+0 )
  213: *     ..
  214: *     .. Local Scalars ..
  215:       LOGICAL            NOTRAN, NOUNIT, UPPER
  216:       CHARACTER          TRANST
  217:       INTEGER            I, J, K, KASE, NZ
  218:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  219: *     ..
  220: *     .. Local Arrays ..
  221:       INTEGER            ISAVE( 3 )
  222: *     ..
  223: *     .. External Subroutines ..
  224:       EXTERNAL           DAXPY, DCOPY, DLACN2, DTBMV, DTBSV, XERBLA
  225: *     ..
  226: *     .. Intrinsic Functions ..
  227:       INTRINSIC          ABS, MAX, MIN
  228: *     ..
  229: *     .. External Functions ..
  230:       LOGICAL            LSAME
  231:       DOUBLE PRECISION   DLAMCH
  232:       EXTERNAL           LSAME, DLAMCH
  233: *     ..
  234: *     .. Executable Statements ..
  235: *
  236: *     Test the input parameters.
  237: *
  238:       INFO = 0
  239:       UPPER = LSAME( UPLO, 'U' )
  240:       NOTRAN = LSAME( TRANS, 'N' )
  241:       NOUNIT = LSAME( DIAG, 'N' )
  242: *
  243:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  244:          INFO = -1
  245:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  246:      $         LSAME( TRANS, 'C' ) ) THEN
  247:          INFO = -2
  248:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  249:          INFO = -3
  250:       ELSE IF( N.LT.0 ) THEN
  251:          INFO = -4
  252:       ELSE IF( KD.LT.0 ) THEN
  253:          INFO = -5
  254:       ELSE IF( NRHS.LT.0 ) THEN
  255:          INFO = -6
  256:       ELSE IF( LDAB.LT.KD+1 ) THEN
  257:          INFO = -8
  258:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  259:          INFO = -10
  260:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  261:          INFO = -12
  262:       END IF
  263:       IF( INFO.NE.0 ) THEN
  264:          CALL XERBLA( 'DTBRFS', -INFO )
  265:          RETURN
  266:       END IF
  267: *
  268: *     Quick return if possible
  269: *
  270:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  271:          DO 10 J = 1, NRHS
  272:             FERR( J ) = ZERO
  273:             BERR( J ) = ZERO
  274:    10    CONTINUE
  275:          RETURN
  276:       END IF
  277: *
  278:       IF( NOTRAN ) THEN
  279:          TRANST = 'T'
  280:       ELSE
  281:          TRANST = 'N'
  282:       END IF
  283: *
  284: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  285: *
  286:       NZ = KD + 2
  287:       EPS = DLAMCH( 'Epsilon' )
  288:       SAFMIN = DLAMCH( 'Safe minimum' )
  289:       SAFE1 = NZ*SAFMIN
  290:       SAFE2 = SAFE1 / EPS
  291: *
  292: *     Do for each right hand side
  293: *
  294:       DO 250 J = 1, NRHS
  295: *
  296: *        Compute residual R = B - op(A) * X,
  297: *        where op(A) = A or A**T, depending on TRANS.
  298: *
  299:          CALL DCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
  300:          CALL DTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK( N+1 ),
  301:      $               1 )
  302:          CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
  303: *
  304: *        Compute componentwise relative backward error from formula
  305: *
  306: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  307: *
  308: *        where abs(Z) is the componentwise absolute value of the matrix
  309: *        or vector Z.  If the i-th component of the denominator is less
  310: *        than SAFE2, then SAFE1 is added to the i-th components of the
  311: *        numerator and denominator before dividing.
  312: *
  313:          DO 20 I = 1, N
  314:             WORK( I ) = ABS( B( I, J ) )
  315:    20    CONTINUE
  316: *
  317:          IF( NOTRAN ) THEN
  318: *
  319: *           Compute abs(A)*abs(X) + abs(B).
  320: *
  321:             IF( UPPER ) THEN
  322:                IF( NOUNIT ) THEN
  323:                   DO 40 K = 1, N
  324:                      XK = ABS( X( K, J ) )
  325:                      DO 30 I = MAX( 1, K-KD ), K
  326:                         WORK( I ) = WORK( I ) +
  327:      $                              ABS( AB( KD+1+I-K, K ) )*XK
  328:    30                CONTINUE
  329:    40             CONTINUE
  330:                ELSE
  331:                   DO 60 K = 1, N
  332:                      XK = ABS( X( K, J ) )
  333:                      DO 50 I = MAX( 1, K-KD ), K - 1
  334:                         WORK( I ) = WORK( I ) +
  335:      $                              ABS( AB( KD+1+I-K, K ) )*XK
  336:    50                CONTINUE
  337:                      WORK( K ) = WORK( K ) + XK
  338:    60             CONTINUE
  339:                END IF
  340:             ELSE
  341:                IF( NOUNIT ) THEN
  342:                   DO 80 K = 1, N
  343:                      XK = ABS( X( K, J ) )
  344:                      DO 70 I = K, MIN( N, K+KD )
  345:                         WORK( I ) = WORK( I ) + ABS( AB( 1+I-K, K ) )*XK
  346:    70                CONTINUE
  347:    80             CONTINUE
  348:                ELSE
  349:                   DO 100 K = 1, N
  350:                      XK = ABS( X( K, J ) )
  351:                      DO 90 I = K + 1, MIN( N, K+KD )
  352:                         WORK( I ) = WORK( I ) + ABS( AB( 1+I-K, K ) )*XK
  353:    90                CONTINUE
  354:                      WORK( K ) = WORK( K ) + XK
  355:   100             CONTINUE
  356:                END IF
  357:             END IF
  358:          ELSE
  359: *
  360: *           Compute abs(A**T)*abs(X) + abs(B).
  361: *
  362:             IF( UPPER ) THEN
  363:                IF( NOUNIT ) THEN
  364:                   DO 120 K = 1, N
  365:                      S = ZERO
  366:                      DO 110 I = MAX( 1, K-KD ), K
  367:                         S = S + ABS( AB( KD+1+I-K, K ) )*
  368:      $                      ABS( X( I, J ) )
  369:   110                CONTINUE
  370:                      WORK( K ) = WORK( K ) + S
  371:   120             CONTINUE
  372:                ELSE
  373:                   DO 140 K = 1, N
  374:                      S = ABS( X( K, J ) )
  375:                      DO 130 I = MAX( 1, K-KD ), K - 1
  376:                         S = S + ABS( AB( KD+1+I-K, K ) )*
  377:      $                      ABS( X( I, J ) )
  378:   130                CONTINUE
  379:                      WORK( K ) = WORK( K ) + S
  380:   140             CONTINUE
  381:                END IF
  382:             ELSE
  383:                IF( NOUNIT ) THEN
  384:                   DO 160 K = 1, N
  385:                      S = ZERO
  386:                      DO 150 I = K, MIN( N, K+KD )
  387:                         S = S + ABS( AB( 1+I-K, K ) )*ABS( X( I, J ) )
  388:   150                CONTINUE
  389:                      WORK( K ) = WORK( K ) + S
  390:   160             CONTINUE
  391:                ELSE
  392:                   DO 180 K = 1, N
  393:                      S = ABS( X( K, J ) )
  394:                      DO 170 I = K + 1, MIN( N, K+KD )
  395:                         S = S + ABS( AB( 1+I-K, K ) )*ABS( X( I, J ) )
  396:   170                CONTINUE
  397:                      WORK( K ) = WORK( K ) + S
  398:   180             CONTINUE
  399:                END IF
  400:             END IF
  401:          END IF
  402:          S = ZERO
  403:          DO 190 I = 1, N
  404:             IF( WORK( I ).GT.SAFE2 ) THEN
  405:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  406:             ELSE
  407:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  408:      $             ( WORK( I )+SAFE1 ) )
  409:             END IF
  410:   190    CONTINUE
  411:          BERR( J ) = S
  412: *
  413: *        Bound error from formula
  414: *
  415: *        norm(X - XTRUE) / norm(X) .le. FERR =
  416: *        norm( abs(inv(op(A)))*
  417: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  418: *
  419: *        where
  420: *          norm(Z) is the magnitude of the largest component of Z
  421: *          inv(op(A)) is the inverse of op(A)
  422: *          abs(Z) is the componentwise absolute value of the matrix or
  423: *             vector Z
  424: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  425: *          EPS is machine epsilon
  426: *
  427: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  428: *        is incremented by SAFE1 if the i-th component of
  429: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  430: *
  431: *        Use DLACN2 to estimate the infinity-norm of the matrix
  432: *           inv(op(A)) * diag(W),
  433: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  434: *
  435:          DO 200 I = 1, N
  436:             IF( WORK( I ).GT.SAFE2 ) THEN
  437:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  438:             ELSE
  439:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  440:             END IF
  441:   200    CONTINUE
  442: *
  443:          KASE = 0
  444:   210    CONTINUE
  445:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  446:      $                KASE, ISAVE )
  447:          IF( KASE.NE.0 ) THEN
  448:             IF( KASE.EQ.1 ) THEN
  449: *
  450: *              Multiply by diag(W)*inv(op(A)**T).
  451: *
  452:                CALL DTBSV( UPLO, TRANST, DIAG, N, KD, AB, LDAB,
  453:      $                     WORK( N+1 ), 1 )
  454:                DO 220 I = 1, N
  455:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  456:   220          CONTINUE
  457:             ELSE
  458: *
  459: *              Multiply by inv(op(A))*diag(W).
  460: *
  461:                DO 230 I = 1, N
  462:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  463:   230          CONTINUE
  464:                CALL DTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB,
  465:      $                     WORK( N+1 ), 1 )
  466:             END IF
  467:             GO TO 210
  468:          END IF
  469: *
  470: *        Normalize error.
  471: *
  472:          LSTRES = ZERO
  473:          DO 240 I = 1, N
  474:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  475:   240    CONTINUE
  476:          IF( LSTRES.NE.ZERO )
  477:      $      FERR( J ) = FERR( J ) / LSTRES
  478: *
  479:   250 CONTINUE
  480: *
  481:       RETURN
  482: *
  483: *     End of DTBRFS
  484: *
  485:       END

CVSweb interface <joel.bertrand@systella.fr>