File:  [local] / rpl / lapack / lapack / dsytrs_aa.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:11 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTRS_AA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRS_AA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs_aa.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs_aa.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs_aa.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
   22: *                             WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            N, NRHS, LDA, LDB, LWORK, INFO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DSYTRS_AA solves a system of linear equations A*X = B with a real
   40: *> symmetric matrix A using the factorization A = U**T*T*U or
   41: *> A = L*T*L**T computed by DSYTRF_AA.
   42: *> \endverbatim
   43: *
   44: *  Arguments:
   45: *  ==========
   46: *
   47: *> \param[in] UPLO
   48: *> \verbatim
   49: *>          UPLO is CHARACTER*1
   50: *>          Specifies whether the details of the factorization are stored
   51: *>          as an upper or lower triangular matrix.
   52: *>          = 'U':  Upper triangular, form is A = U**T*T*U;
   53: *>          = 'L':  Lower triangular, form is A = L*T*L**T.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrix B.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] A
   70: *> \verbatim
   71: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   72: *>          Details of factors computed by DSYTRF_AA.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges as computed by DSYTRF_AA.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] B
   88: *> \verbatim
   89: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   90: *>          On entry, the right hand side matrix B.
   91: *>          On exit, the solution matrix X.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDB
   95: *> \verbatim
   96: *>          LDB is INTEGER
   97: *>          The leading dimension of the array B.  LDB >= max(1,N).
   98: *> \endverbatim
   99: *>
  100: *> \param[out] WORK
  101: *> \verbatim
  102: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  103: *> \endverbatim
  104: *>
  105: *> \param[in] LWORK
  106: *> \verbatim
  107: *>          LWORK is INTEGER
  108: *>          The dimension of the array WORK. LWORK >= max(1,3*N-2).
  109: *> \endverbatim
  110: *>
  111: *> \param[out] INFO
  112: *> \verbatim
  113: *>          INFO is INTEGER
  114: *>          = 0:  successful exit
  115: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  116: *> \endverbatim
  117: *
  118: *  Authors:
  119: *  ========
  120: *
  121: *> \author Univ. of Tennessee
  122: *> \author Univ. of California Berkeley
  123: *> \author Univ. of Colorado Denver
  124: *> \author NAG Ltd.
  125: *
  126: *> \ingroup doubleSYcomputational
  127: *
  128: *  =====================================================================
  129:       SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  130:      $                      WORK, LWORK, INFO )
  131: *
  132: *  -- LAPACK computational routine --
  133: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  134: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135: *
  136:       IMPLICIT NONE
  137: *
  138: *     .. Scalar Arguments ..
  139:       CHARACTER          UPLO
  140:       INTEGER            N, NRHS, LDA, LDB, LWORK, INFO
  141: *     ..
  142: *     .. Array Arguments ..
  143:       INTEGER            IPIV( * )
  144:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
  145: *     ..
  146: *
  147: *  =====================================================================
  148: *
  149:       DOUBLE PRECISION   ONE
  150:       PARAMETER          ( ONE = 1.0D+0 )
  151: *     ..
  152: *     .. Local Scalars ..
  153:       LOGICAL            LQUERY, UPPER
  154:       INTEGER            K, KP, LWKOPT
  155: *     ..
  156: *     .. External Functions ..
  157:       LOGICAL            LSAME
  158:       EXTERNAL           LSAME
  159: *     ..
  160: *     .. External Subroutines ..
  161:       EXTERNAL           DLACPY, DGTSV, DSWAP, DTRSM, XERBLA
  162: *     ..
  163: *     .. Intrinsic Functions ..
  164:       INTRINSIC          MAX
  165: *     ..
  166: *     .. Executable Statements ..
  167: *
  168:       INFO = 0
  169:       UPPER = LSAME( UPLO, 'U' )
  170:       LQUERY = ( LWORK.EQ.-1 )
  171:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  172:          INFO = -1
  173:       ELSE IF( N.LT.0 ) THEN
  174:          INFO = -2
  175:       ELSE IF( NRHS.LT.0 ) THEN
  176:          INFO = -3
  177:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  178:          INFO = -5
  179:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  180:          INFO = -8
  181:       ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
  182:          INFO = -10
  183:       END IF
  184:       IF( INFO.NE.0 ) THEN
  185:          CALL XERBLA( 'DSYTRS_AA', -INFO )
  186:          RETURN
  187:       ELSE IF( LQUERY ) THEN
  188:          LWKOPT = (3*N-2)
  189:          WORK( 1 ) = LWKOPT
  190:          RETURN
  191:       END IF
  192: *
  193: *     Quick return if possible
  194: *
  195:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  196:      $   RETURN
  197: *
  198:       IF( UPPER ) THEN
  199: *
  200: *        Solve A*X = B, where A = U**T*T*U.
  201: *
  202: *        1) Forward substitution with U**T
  203: *
  204:          IF( N.GT.1 ) THEN
  205: *
  206: *           Pivot, P**T * B -> B
  207: *
  208:             DO K = 1, N
  209:                KP = IPIV( K )
  210:                IF( KP.NE.K )
  211:      $             CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  212:             END DO
  213: *
  214: *           Compute U**T \ B -> B    [ (U**T \P**T * B) ]
  215: *
  216:             CALL DTRSM('L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  217:      $                  LDA, B( 2, 1 ), LDB)
  218:          END IF
  219: *
  220: *        2) Solve with triangular matrix T
  221: *
  222: *        Compute T \ B -> B   [ T \ (U**T \P**T * B) ]
  223: *
  224:          CALL DLACPY( 'F', 1, N, A( 1, 1 ), LDA+1, WORK( N ), 1)
  225:          IF( N.GT.1 ) THEN
  226:             CALL DLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1 )
  227:             CALL DLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1 )
  228:          END IF
  229:          CALL DGTSV( N, NRHS, WORK( 1 ), WORK( N ), WORK( 2*N ), B, LDB,
  230:      $               INFO )
  231: *
  232: *        3) Backward substitution with U
  233: *
  234:          IF( N.GT.1 ) THEN
  235: *
  236: *           Compute U \ B -> B   [ U \ (T \ (U**T \P**T * B) ) ]
  237: *
  238:             CALL DTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  239:      $                  LDA, B( 2, 1 ), LDB)
  240: *
  241: *           Pivot, P * B -> B  [ P * (U \ (T \ (U**T \P**T * B) )) ]
  242: *
  243:             DO K = N, 1, -1
  244:                KP = IPIV( K )
  245:                IF( KP.NE.K )
  246:      $            CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  247:             END DO
  248:          END IF
  249: *
  250:       ELSE
  251: *
  252: *        Solve A*X = B, where A = L*T*L**T.
  253: *
  254: *        1) Forward substitution with L
  255: *
  256:          IF( N.GT.1 ) THEN
  257: *
  258: *           Pivot, P**T * B -> B
  259: *
  260:             DO K = 1, N
  261:                KP = IPIV( K )
  262:                IF( KP.NE.K )
  263:      $            CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  264:             END DO
  265: *
  266: *           Compute L \ B -> B    [ (L \P**T * B) ]
  267: *
  268:             CALL DTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  269:      $                  LDA, B( 2, 1 ), LDB)
  270:          END IF
  271: *
  272: *        2) Solve with triangular matrix T
  273: *
  274: *        Compute T \ B -> B   [ T \ (L \P**T * B) ]
  275: *
  276:          CALL DLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  277:          IF( N.GT.1 ) THEN
  278:             CALL DLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
  279:             CALL DLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1 )
  280:          END IF
  281:          CALL DGTSV( N, NRHS, WORK( 1 ), WORK(N), WORK( 2*N ), B, LDB,
  282:      $               INFO)
  283: *
  284: *        3) Backward substitution with L**T
  285: *
  286:          IF( N.GT.1 ) THEN
  287: *
  288: *           Compute (L**T \ B) -> B   [ L**T \ (T \ (L \P**T * B) ) ]
  289: *
  290:             CALL DTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  291:      $                  LDA, B( 2, 1 ), LDB)
  292: *
  293: *           Pivot, P * B -> B  [ P * (L**T \ (T \ (L \P**T * B) )) ]
  294: *
  295:             DO K = N, 1, -1
  296:                KP = IPIV( K )
  297:                IF( KP.NE.K )
  298:      $            CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  299:             END DO
  300:          END IF
  301: *
  302:       END IF
  303: *
  304:       RETURN
  305: *
  306: *     End of DSYTRS_AA
  307: *
  308:       END

CVSweb interface <joel.bertrand@systella.fr>