File:  [local] / rpl / lapack / lapack / dsytrs2.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:05 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DSYTRS2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRS2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, 
   22: *                           WORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDA, LDB, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DSYTRS2 solves a system of linear equations A*X = B with a real
   40: *> symmetric matrix A using the factorization A = U*D*U**T or
   41: *> A = L*D*L**T computed by DSYTRF and converted by DSYCONV.
   42: *> \endverbatim
   43: *
   44: *  Arguments:
   45: *  ==========
   46: *
   47: *> \param[in] UPLO
   48: *> \verbatim
   49: *>          UPLO is CHARACTER*1
   50: *>          Specifies whether the details of the factorization are stored
   51: *>          as an upper or lower triangular matrix.
   52: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   53: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrix B.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] A
   70: *> \verbatim
   71: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   72: *>          The block diagonal matrix D and the multipliers used to
   73: *>          obtain the factor U or L as computed by DSYTRF.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] LDA
   77: *> \verbatim
   78: *>          LDA is INTEGER
   79: *>          The leading dimension of the array A.  LDA >= max(1,N).
   80: *> \endverbatim
   81: *>
   82: *> \param[in] IPIV
   83: *> \verbatim
   84: *>          IPIV is INTEGER array, dimension (N)
   85: *>          Details of the interchanges and the block structure of D
   86: *>          as determined by DSYTRF.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] B
   90: *> \verbatim
   91: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   92: *>          On entry, the right hand side matrix B.
   93: *>          On exit, the solution matrix X.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDB
   97: *> \verbatim
   98: *>          LDB is INTEGER
   99: *>          The leading dimension of the array B.  LDB >= max(1,N).
  100: *> \endverbatim
  101: *>
  102: *> \param[out] WORK
  103: *> \verbatim
  104: *>          WORK is REAL array, dimension (N)
  105: *> \endverbatim
  106: *>
  107: *> \param[out] INFO
  108: *> \verbatim
  109: *>          INFO is INTEGER
  110: *>          = 0:  successful exit
  111: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  112: *> \endverbatim
  113: *
  114: *  Authors:
  115: *  ========
  116: *
  117: *> \author Univ. of Tennessee 
  118: *> \author Univ. of California Berkeley 
  119: *> \author Univ. of Colorado Denver 
  120: *> \author NAG Ltd. 
  121: *
  122: *> \date November 2011
  123: *
  124: *> \ingroup doubleSYcomputational
  125: *
  126: *  =====================================================================
  127:       SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, 
  128:      $                    WORK, INFO )
  129: *
  130: *  -- LAPACK computational routine (version 3.4.0) --
  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133: *     November 2011
  134: *
  135: *     .. Scalar Arguments ..
  136:       CHARACTER          UPLO
  137:       INTEGER            INFO, LDA, LDB, N, NRHS
  138: *     ..
  139: *     .. Array Arguments ..
  140:       INTEGER            IPIV( * )
  141:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
  142: *     ..
  143: *
  144: *  =====================================================================
  145: *
  146: *     .. Parameters ..
  147:       DOUBLE PRECISION   ONE
  148:       PARAMETER          ( ONE = 1.0D+0 )
  149: *     ..
  150: *     .. Local Scalars ..
  151:       LOGICAL            UPPER
  152:       INTEGER            I, IINFO, J, K, KP
  153:       DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
  154: *     ..
  155: *     .. External Functions ..
  156:       LOGICAL            LSAME
  157:       EXTERNAL           LSAME
  158: *     ..
  159: *     .. External Subroutines ..
  160:       EXTERNAL           DSCAL, DSYCONV, DSWAP, DTRSM, XERBLA
  161: *     ..
  162: *     .. Intrinsic Functions ..
  163:       INTRINSIC          MAX
  164: *     ..
  165: *     .. Executable Statements ..
  166: *
  167:       INFO = 0
  168:       UPPER = LSAME( UPLO, 'U' )
  169:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  170:          INFO = -1
  171:       ELSE IF( N.LT.0 ) THEN
  172:          INFO = -2
  173:       ELSE IF( NRHS.LT.0 ) THEN
  174:          INFO = -3
  175:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  176:          INFO = -5
  177:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  178:          INFO = -8
  179:       END IF
  180:       IF( INFO.NE.0 ) THEN
  181:          CALL XERBLA( 'DSYTRS2', -INFO )
  182:          RETURN
  183:       END IF
  184: *
  185: *     Quick return if possible
  186: *
  187:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  188:      $   RETURN
  189: *
  190: *     Convert A
  191: *
  192:       CALL DSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
  193: *
  194:       IF( UPPER ) THEN
  195: *
  196: *        Solve A*X = B, where A = U*D*U**T.
  197: *
  198: *       P**T * B  
  199:         K=N
  200:         DO WHILE ( K .GE. 1 )
  201:          IF( IPIV( K ).GT.0 ) THEN
  202: *           1 x 1 diagonal block
  203: *           Interchange rows K and IPIV(K).
  204:             KP = IPIV( K )
  205:             IF( KP.NE.K )
  206:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  207:             K=K-1
  208:          ELSE
  209: *           2 x 2 diagonal block
  210: *           Interchange rows K-1 and -IPIV(K).
  211:             KP = -IPIV( K )
  212:             IF( KP.EQ.-IPIV( K-1 ) )
  213:      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  214:             K=K-2
  215:          END IF
  216:         END DO
  217: *
  218: *  Compute (U \P**T * B) -> B    [ (U \P**T * B) ]
  219: *
  220:         CALL DTRSM('L','U','N','U',N,NRHS,ONE,A,LDA,B,LDB)
  221: *
  222: *  Compute D \ B -> B   [ D \ (U \P**T * B) ]
  223: *       
  224:          I=N
  225:          DO WHILE ( I .GE. 1 )
  226:             IF( IPIV(I) .GT. 0 ) THEN
  227:               CALL DSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
  228:             ELSEIF ( I .GT. 1) THEN
  229:                IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
  230:                   AKM1K = WORK(I)
  231:                   AKM1 = A( I-1, I-1 ) / AKM1K
  232:                   AK = A( I, I ) / AKM1K
  233:                   DENOM = AKM1*AK - ONE
  234:                   DO 15 J = 1, NRHS
  235:                      BKM1 = B( I-1, J ) / AKM1K
  236:                      BK = B( I, J ) / AKM1K
  237:                      B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
  238:                      B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
  239:  15              CONTINUE
  240:                I = I - 1
  241:                ENDIF
  242:             ENDIF
  243:             I = I - 1
  244:          END DO
  245: *
  246: *      Compute (U**T \ B) -> B   [ U**T \ (D \ (U \P**T * B) ) ]
  247: *
  248:          CALL DTRSM('L','U','T','U',N,NRHS,ONE,A,LDA,B,LDB)
  249: *
  250: *       P * B  [ P * (U**T \ (D \ (U \P**T * B) )) ]
  251: *
  252:         K=1
  253:         DO WHILE ( K .LE. N )
  254:          IF( IPIV( K ).GT.0 ) THEN
  255: *           1 x 1 diagonal block
  256: *           Interchange rows K and IPIV(K).
  257:             KP = IPIV( K )
  258:             IF( KP.NE.K )
  259:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  260:             K=K+1
  261:          ELSE
  262: *           2 x 2 diagonal block
  263: *           Interchange rows K-1 and -IPIV(K).
  264:             KP = -IPIV( K )
  265:             IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
  266:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  267:             K=K+2
  268:          ENDIF
  269:         END DO
  270: *
  271:       ELSE
  272: *
  273: *        Solve A*X = B, where A = L*D*L**T.
  274: *
  275: *       P**T * B  
  276:         K=1
  277:         DO WHILE ( K .LE. N )
  278:          IF( IPIV( K ).GT.0 ) THEN
  279: *           1 x 1 diagonal block
  280: *           Interchange rows K and IPIV(K).
  281:             KP = IPIV( K )
  282:             IF( KP.NE.K )
  283:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  284:             K=K+1
  285:          ELSE
  286: *           2 x 2 diagonal block
  287: *           Interchange rows K and -IPIV(K+1).
  288:             KP = -IPIV( K+1 )
  289:             IF( KP.EQ.-IPIV( K ) )
  290:      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  291:             K=K+2
  292:          ENDIF
  293:         END DO
  294: *
  295: *  Compute (L \P**T * B) -> B    [ (L \P**T * B) ]
  296: *
  297:         CALL DTRSM('L','L','N','U',N,NRHS,ONE,A,LDA,B,LDB)
  298: *
  299: *  Compute D \ B -> B   [ D \ (L \P**T * B) ]
  300: *       
  301:          I=1
  302:          DO WHILE ( I .LE. N )
  303:             IF( IPIV(I) .GT. 0 ) THEN
  304:               CALL DSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
  305:             ELSE
  306:                   AKM1K = WORK(I)
  307:                   AKM1 = A( I, I ) / AKM1K
  308:                   AK = A( I+1, I+1 ) / AKM1K
  309:                   DENOM = AKM1*AK - ONE
  310:                   DO 25 J = 1, NRHS
  311:                      BKM1 = B( I, J ) / AKM1K
  312:                      BK = B( I+1, J ) / AKM1K
  313:                      B( I, J ) = ( AK*BKM1-BK ) / DENOM
  314:                      B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  315:  25              CONTINUE
  316:                   I = I + 1
  317:             ENDIF
  318:             I = I + 1
  319:          END DO
  320: *
  321: *  Compute (L**T \ B) -> B   [ L**T \ (D \ (L \P**T * B) ) ]
  322:   323:         CALL DTRSM('L','L','T','U',N,NRHS,ONE,A,LDA,B,LDB)
  324: *
  325: *       P * B  [ P * (L**T \ (D \ (L \P**T * B) )) ]
  326: *
  327:         K=N
  328:         DO WHILE ( K .GE. 1 )
  329:          IF( IPIV( K ).GT.0 ) THEN
  330: *           1 x 1 diagonal block
  331: *           Interchange rows K and IPIV(K).
  332:             KP = IPIV( K )
  333:             IF( KP.NE.K )
  334:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  335:             K=K-1
  336:          ELSE
  337: *           2 x 2 diagonal block
  338: *           Interchange rows K-1 and -IPIV(K).
  339:             KP = -IPIV( K )
  340:             IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
  341:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  342:             K=K-2
  343:          ENDIF
  344:         END DO
  345: *
  346:       END IF
  347: *
  348: *     Revert A
  349: *
  350:       CALL DSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO )
  351: *
  352:       RETURN
  353: *
  354: *     End of DSYTRS2
  355: *
  356:       END

CVSweb interface <joel.bertrand@systella.fr>