File:  [local] / rpl / lapack / lapack / dsytrs2.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:50:37 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.3.0.

    1:       SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, 
    2:      $                    WORK, INFO )
    3: *
    4: *  -- LAPACK PROTOTYPE routine (version 3.3.0) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2010
    8: *
    9: *  -- Written by Julie Langou of the Univ. of TN    --
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          UPLO
   13:       INTEGER            INFO, LDA, LDB, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * )
   17:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DSYTRS2 solves a system of linear equations A*X = B with a real
   24: *  symmetric matrix A using the factorization A = U*D*U**T or
   25: *  A = L*D*L**T computed by DSYTRF and converted by DSYCONV.
   26: *
   27: *  Arguments
   28: *  =========
   29: *
   30: *  UPLO    (input) CHARACTER*1
   31: *          Specifies whether the details of the factorization are stored
   32: *          as an upper or lower triangular matrix.
   33: *          = 'U':  Upper triangular, form is A = U*D*U**T;
   34: *          = 'L':  Lower triangular, form is A = L*D*L**T.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A.  N >= 0.
   38: *
   39: *  NRHS    (input) INTEGER
   40: *          The number of right hand sides, i.e., the number of columns
   41: *          of the matrix B.  NRHS >= 0.
   42: *
   43: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   44: *          The block diagonal matrix D and the multipliers used to
   45: *          obtain the factor U or L as computed by DSYTRF.
   46: *
   47: *  LDA     (input) INTEGER
   48: *          The leading dimension of the array A.  LDA >= max(1,N).
   49: *
   50: *  IPIV    (input) INTEGER array, dimension (N)
   51: *          Details of the interchanges and the block structure of D
   52: *          as determined by DSYTRF.
   53: *
   54: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
   55: *          On entry, the right hand side matrix B.
   56: *          On exit, the solution matrix X.
   57: *
   58: *  LDB     (input) INTEGER
   59: *          The leading dimension of the array B.  LDB >= max(1,N).
   60: *
   61: *  WORK    (workspace) REAL array, dimension (N)
   62: *
   63: *  INFO    (output) INTEGER
   64: *          = 0:  successful exit
   65: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   66: *
   67: *  =====================================================================
   68: *
   69: *     .. Parameters ..
   70:       DOUBLE PRECISION   ONE
   71:       PARAMETER          ( ONE = 1.0D+0 )
   72: *     ..
   73: *     .. Local Scalars ..
   74:       LOGICAL            UPPER
   75:       INTEGER            I, IINFO, J, K, KP
   76:       DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
   77: *     ..
   78: *     .. External Functions ..
   79:       LOGICAL            LSAME
   80:       EXTERNAL           LSAME
   81: *     ..
   82: *     .. External Subroutines ..
   83:       EXTERNAL           DSCAL, DSYCONV, DSWAP, DTRSM, XERBLA
   84: *     ..
   85: *     .. Intrinsic Functions ..
   86:       INTRINSIC          MAX
   87: *     ..
   88: *     .. Executable Statements ..
   89: *
   90:       INFO = 0
   91:       UPPER = LSAME( UPLO, 'U' )
   92:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
   93:          INFO = -1
   94:       ELSE IF( N.LT.0 ) THEN
   95:          INFO = -2
   96:       ELSE IF( NRHS.LT.0 ) THEN
   97:          INFO = -3
   98:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
   99:          INFO = -5
  100:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  101:          INFO = -8
  102:       END IF
  103:       IF( INFO.NE.0 ) THEN
  104:          CALL XERBLA( 'DSYTRS2', -INFO )
  105:          RETURN
  106:       END IF
  107: *
  108: *     Quick return if possible
  109: *
  110:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  111:      $   RETURN
  112: *
  113: *     Convert A
  114: *
  115:       CALL DSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
  116: *
  117:       IF( UPPER ) THEN
  118: *
  119: *        Solve A*X = B, where A = U*D*U'.
  120: *
  121: *       P' * B  
  122:         K=N
  123:         DO WHILE ( K .GE. 1 )
  124:          IF( IPIV( K ).GT.0 ) THEN
  125: *           1 x 1 diagonal block
  126: *           Interchange rows K and IPIV(K).
  127:             KP = IPIV( K )
  128:             IF( KP.NE.K )
  129:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  130:             K=K-1
  131:          ELSE
  132: *           2 x 2 diagonal block
  133: *           Interchange rows K-1 and -IPIV(K).
  134:             KP = -IPIV( K )
  135:             IF( KP.EQ.-IPIV( K-1 ) )
  136:      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  137:             K=K-2
  138:          END IF
  139:         END DO
  140: *
  141: *  Compute (U \P' * B) -> B    [ (U \P' * B) ]
  142: *
  143:         CALL DTRSM('L','U','N','U',N,NRHS,ONE,A,N,B,N)
  144: *
  145: *  Compute D \ B -> B   [ D \ (U \P' * B) ]
  146: *       
  147:          I=N
  148:          DO WHILE ( I .GE. 1 )
  149:             IF( IPIV(I) .GT. 0 ) THEN
  150:               CALL DSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), N )
  151:             ELSEIF ( I .GT. 1) THEN
  152:                IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
  153:                   AKM1K = WORK(I)
  154:                   AKM1 = A( I-1, I-1 ) / AKM1K
  155:                   AK = A( I, I ) / AKM1K
  156:                   DENOM = AKM1*AK - ONE
  157:                   DO 15 J = 1, NRHS
  158:                      BKM1 = B( I-1, J ) / AKM1K
  159:                      BK = B( I, J ) / AKM1K
  160:                      B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
  161:                      B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
  162:  15              CONTINUE
  163:                I = I - 1
  164:                ENDIF
  165:             ENDIF
  166:             I = I - 1
  167:          END DO
  168: *
  169: *      Compute (U' \ B) -> B   [ U' \ (D \ (U \P' * B) ) ]
  170: *
  171:          CALL DTRSM('L','U','T','U',N,NRHS,ONE,A,N,B,N)
  172: *
  173: *       P * B  [ P * (U' \ (D \ (U \P' * B) )) ]
  174: *
  175:         K=1
  176:         DO WHILE ( K .LE. N )
  177:          IF( IPIV( K ).GT.0 ) THEN
  178: *           1 x 1 diagonal block
  179: *           Interchange rows K and IPIV(K).
  180:             KP = IPIV( K )
  181:             IF( KP.NE.K )
  182:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  183:             K=K+1
  184:          ELSE
  185: *           2 x 2 diagonal block
  186: *           Interchange rows K-1 and -IPIV(K).
  187:             KP = -IPIV( K )
  188:             IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
  189:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  190:             K=K+2
  191:          ENDIF
  192:         END DO
  193: *
  194:       ELSE
  195: *
  196: *        Solve A*X = B, where A = L*D*L'.
  197: *
  198: *       P' * B  
  199:         K=1
  200:         DO WHILE ( K .LE. N )
  201:          IF( IPIV( K ).GT.0 ) THEN
  202: *           1 x 1 diagonal block
  203: *           Interchange rows K and IPIV(K).
  204:             KP = IPIV( K )
  205:             IF( KP.NE.K )
  206:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  207:             K=K+1
  208:          ELSE
  209: *           2 x 2 diagonal block
  210: *           Interchange rows K and -IPIV(K+1).
  211:             KP = -IPIV( K+1 )
  212:             IF( KP.EQ.-IPIV( K ) )
  213:      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  214:             K=K+2
  215:          ENDIF
  216:         END DO
  217: *
  218: *  Compute (L \P' * B) -> B    [ (L \P' * B) ]
  219: *
  220:         CALL DTRSM('L','L','N','U',N,NRHS,ONE,A,N,B,N)
  221: *
  222: *  Compute D \ B -> B   [ D \ (L \P' * B) ]
  223: *       
  224:          I=1
  225:          DO WHILE ( I .LE. N )
  226:             IF( IPIV(I) .GT. 0 ) THEN
  227:               CALL DSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), N )
  228:             ELSE
  229:                   AKM1K = WORK(I)
  230:                   AKM1 = A( I, I ) / AKM1K
  231:                   AK = A( I+1, I+1 ) / AKM1K
  232:                   DENOM = AKM1*AK - ONE
  233:                   DO 25 J = 1, NRHS
  234:                      BKM1 = B( I, J ) / AKM1K
  235:                      BK = B( I+1, J ) / AKM1K
  236:                      B( I, J ) = ( AK*BKM1-BK ) / DENOM
  237:                      B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  238:  25              CONTINUE
  239:                   I = I + 1
  240:             ENDIF
  241:             I = I + 1
  242:          END DO
  243: *
  244: *  Compute (L' \ B) -> B   [ L' \ (D \ (L \P' * B) ) ]
  245:   246:         CALL DTRSM('L','L','T','U',N,NRHS,ONE,A,N,B,N)
  247: *
  248: *       P * B  [ P * (L' \ (D \ (L \P' * B) )) ]
  249: *
  250:         K=N
  251:         DO WHILE ( K .GE. 1 )
  252:          IF( IPIV( K ).GT.0 ) THEN
  253: *           1 x 1 diagonal block
  254: *           Interchange rows K and IPIV(K).
  255:             KP = IPIV( K )
  256:             IF( KP.NE.K )
  257:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  258:             K=K-1
  259:          ELSE
  260: *           2 x 2 diagonal block
  261: *           Interchange rows K-1 and -IPIV(K).
  262:             KP = -IPIV( K )
  263:             IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
  264:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  265:             K=K-2
  266:          ENDIF
  267:         END DO
  268: *
  269:       END IF
  270: *
  271: *     Revert A
  272: *
  273:       CALL DSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO )
  274: *
  275:       RETURN
  276: *
  277: *     End of DSYTRS2
  278: *
  279:       END

CVSweb interface <joel.bertrand@systella.fr>