File:  [local] / rpl / lapack / lapack / dsytrs2.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:11 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTRS2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRS2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
   22: *                           WORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDA, LDB, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DSYTRS2 solves a system of linear equations A*X = B with a real
   40: *> symmetric matrix A using the factorization A = U*D*U**T or
   41: *> A = L*D*L**T computed by DSYTRF and converted by DSYCONV.
   42: *> \endverbatim
   43: *
   44: *  Arguments:
   45: *  ==========
   46: *
   47: *> \param[in] UPLO
   48: *> \verbatim
   49: *>          UPLO is CHARACTER*1
   50: *>          Specifies whether the details of the factorization are stored
   51: *>          as an upper or lower triangular matrix.
   52: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   53: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrix B.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in,out] A
   70: *> \verbatim
   71: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   72: *>          The block diagonal matrix D and the multipliers used to
   73: *>          obtain the factor U or L as computed by DSYTRF.
   74: *>          Note that A is input / output. This might be counter-intuitive,
   75: *>          and one may think that A is input only. A is input / output. This
   76: *>          is because, at the start of the subroutine, we permute A in a
   77: *>          "better" form and then we permute A back to its original form at
   78: *>          the end.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[in] IPIV
   88: *> \verbatim
   89: *>          IPIV is INTEGER array, dimension (N)
   90: *>          Details of the interchanges and the block structure of D
   91: *>          as determined by DSYTRF.
   92: *> \endverbatim
   93: *>
   94: *> \param[in,out] B
   95: *> \verbatim
   96: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   97: *>          On entry, the right hand side matrix B.
   98: *>          On exit, the solution matrix X.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDB
  102: *> \verbatim
  103: *>          LDB is INTEGER
  104: *>          The leading dimension of the array B.  LDB >= max(1,N).
  105: *> \endverbatim
  106: *>
  107: *> \param[out] WORK
  108: *> \verbatim
  109: *>          WORK is DOUBLE PRECISION array, dimension (N)
  110: *> \endverbatim
  111: *>
  112: *> \param[out] INFO
  113: *> \verbatim
  114: *>          INFO is INTEGER
  115: *>          = 0:  successful exit
  116: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  117: *> \endverbatim
  118: *
  119: *  Authors:
  120: *  ========
  121: *
  122: *> \author Univ. of Tennessee
  123: *> \author Univ. of California Berkeley
  124: *> \author Univ. of Colorado Denver
  125: *> \author NAG Ltd.
  126: *
  127: *> \ingroup doubleSYcomputational
  128: *
  129: *  =====================================================================
  130:       SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  131:      $                    WORK, INFO )
  132: *
  133: *  -- LAPACK computational routine --
  134: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  135: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136: *
  137: *     .. Scalar Arguments ..
  138:       CHARACTER          UPLO
  139:       INTEGER            INFO, LDA, LDB, N, NRHS
  140: *     ..
  141: *     .. Array Arguments ..
  142:       INTEGER            IPIV( * )
  143:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
  144: *     ..
  145: *
  146: *  =====================================================================
  147: *
  148: *     .. Parameters ..
  149:       DOUBLE PRECISION   ONE
  150:       PARAMETER          ( ONE = 1.0D+0 )
  151: *     ..
  152: *     .. Local Scalars ..
  153:       LOGICAL            UPPER
  154:       INTEGER            I, IINFO, J, K, KP
  155:       DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
  156: *     ..
  157: *     .. External Functions ..
  158:       LOGICAL            LSAME
  159:       EXTERNAL           LSAME
  160: *     ..
  161: *     .. External Subroutines ..
  162:       EXTERNAL           DSCAL, DSYCONV, DSWAP, DTRSM, XERBLA
  163: *     ..
  164: *     .. Intrinsic Functions ..
  165:       INTRINSIC          MAX
  166: *     ..
  167: *     .. Executable Statements ..
  168: *
  169:       INFO = 0
  170:       UPPER = LSAME( UPLO, 'U' )
  171:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  172:          INFO = -1
  173:       ELSE IF( N.LT.0 ) THEN
  174:          INFO = -2
  175:       ELSE IF( NRHS.LT.0 ) THEN
  176:          INFO = -3
  177:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  178:          INFO = -5
  179:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  180:          INFO = -8
  181:       END IF
  182:       IF( INFO.NE.0 ) THEN
  183:          CALL XERBLA( 'DSYTRS2', -INFO )
  184:          RETURN
  185:       END IF
  186: *
  187: *     Quick return if possible
  188: *
  189:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  190:      $   RETURN
  191: *
  192: *     Convert A
  193: *
  194:       CALL DSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
  195: *
  196:       IF( UPPER ) THEN
  197: *
  198: *        Solve A*X = B, where A = U*D*U**T.
  199: *
  200: *       P**T * B
  201:         K=N
  202:         DO WHILE ( K .GE. 1 )
  203:          IF( IPIV( K ).GT.0 ) THEN
  204: *           1 x 1 diagonal block
  205: *           Interchange rows K and IPIV(K).
  206:             KP = IPIV( K )
  207:             IF( KP.NE.K )
  208:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  209:             K=K-1
  210:          ELSE
  211: *           2 x 2 diagonal block
  212: *           Interchange rows K-1 and -IPIV(K).
  213:             KP = -IPIV( K )
  214:             IF( KP.EQ.-IPIV( K-1 ) )
  215:      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  216:             K=K-2
  217:          END IF
  218:         END DO
  219: *
  220: *  Compute (U \P**T * B) -> B    [ (U \P**T * B) ]
  221: *
  222:         CALL DTRSM('L','U','N','U',N,NRHS,ONE,A,LDA,B,LDB)
  223: *
  224: *  Compute D \ B -> B   [ D \ (U \P**T * B) ]
  225: *
  226:          I=N
  227:          DO WHILE ( I .GE. 1 )
  228:             IF( IPIV(I) .GT. 0 ) THEN
  229:               CALL DSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
  230:             ELSEIF ( I .GT. 1) THEN
  231:                IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
  232:                   AKM1K = WORK(I)
  233:                   AKM1 = A( I-1, I-1 ) / AKM1K
  234:                   AK = A( I, I ) / AKM1K
  235:                   DENOM = AKM1*AK - ONE
  236:                   DO 15 J = 1, NRHS
  237:                      BKM1 = B( I-1, J ) / AKM1K
  238:                      BK = B( I, J ) / AKM1K
  239:                      B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
  240:                      B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
  241:  15              CONTINUE
  242:                I = I - 1
  243:                ENDIF
  244:             ENDIF
  245:             I = I - 1
  246:          END DO
  247: *
  248: *      Compute (U**T \ B) -> B   [ U**T \ (D \ (U \P**T * B) ) ]
  249: *
  250:          CALL DTRSM('L','U','T','U',N,NRHS,ONE,A,LDA,B,LDB)
  251: *
  252: *       P * B  [ P * (U**T \ (D \ (U \P**T * B) )) ]
  253: *
  254:         K=1
  255:         DO WHILE ( K .LE. N )
  256:          IF( IPIV( K ).GT.0 ) THEN
  257: *           1 x 1 diagonal block
  258: *           Interchange rows K and IPIV(K).
  259:             KP = IPIV( K )
  260:             IF( KP.NE.K )
  261:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  262:             K=K+1
  263:          ELSE
  264: *           2 x 2 diagonal block
  265: *           Interchange rows K-1 and -IPIV(K).
  266:             KP = -IPIV( K )
  267:             IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
  268:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  269:             K=K+2
  270:          ENDIF
  271:         END DO
  272: *
  273:       ELSE
  274: *
  275: *        Solve A*X = B, where A = L*D*L**T.
  276: *
  277: *       P**T * B
  278:         K=1
  279:         DO WHILE ( K .LE. N )
  280:          IF( IPIV( K ).GT.0 ) THEN
  281: *           1 x 1 diagonal block
  282: *           Interchange rows K and IPIV(K).
  283:             KP = IPIV( K )
  284:             IF( KP.NE.K )
  285:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  286:             K=K+1
  287:          ELSE
  288: *           2 x 2 diagonal block
  289: *           Interchange rows K and -IPIV(K+1).
  290:             KP = -IPIV( K+1 )
  291:             IF( KP.EQ.-IPIV( K ) )
  292:      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  293:             K=K+2
  294:          ENDIF
  295:         END DO
  296: *
  297: *  Compute (L \P**T * B) -> B    [ (L \P**T * B) ]
  298: *
  299:         CALL DTRSM('L','L','N','U',N,NRHS,ONE,A,LDA,B,LDB)
  300: *
  301: *  Compute D \ B -> B   [ D \ (L \P**T * B) ]
  302: *
  303:          I=1
  304:          DO WHILE ( I .LE. N )
  305:             IF( IPIV(I) .GT. 0 ) THEN
  306:               CALL DSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
  307:             ELSE
  308:                   AKM1K = WORK(I)
  309:                   AKM1 = A( I, I ) / AKM1K
  310:                   AK = A( I+1, I+1 ) / AKM1K
  311:                   DENOM = AKM1*AK - ONE
  312:                   DO 25 J = 1, NRHS
  313:                      BKM1 = B( I, J ) / AKM1K
  314:                      BK = B( I+1, J ) / AKM1K
  315:                      B( I, J ) = ( AK*BKM1-BK ) / DENOM
  316:                      B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  317:  25              CONTINUE
  318:                   I = I + 1
  319:             ENDIF
  320:             I = I + 1
  321:          END DO
  322: *
  323: *  Compute (L**T \ B) -> B   [ L**T \ (D \ (L \P**T * B) ) ]
  324: *
  325:         CALL DTRSM('L','L','T','U',N,NRHS,ONE,A,LDA,B,LDB)
  326: *
  327: *       P * B  [ P * (L**T \ (D \ (L \P**T * B) )) ]
  328: *
  329:         K=N
  330:         DO WHILE ( K .GE. 1 )
  331:          IF( IPIV( K ).GT.0 ) THEN
  332: *           1 x 1 diagonal block
  333: *           Interchange rows K and IPIV(K).
  334:             KP = IPIV( K )
  335:             IF( KP.NE.K )
  336:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  337:             K=K-1
  338:          ELSE
  339: *           2 x 2 diagonal block
  340: *           Interchange rows K-1 and -IPIV(K).
  341:             KP = -IPIV( K )
  342:             IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
  343:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  344:             K=K-2
  345:          ENDIF
  346:         END DO
  347: *
  348:       END IF
  349: *
  350: *     Revert A
  351: *
  352:       CALL DSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO )
  353: *
  354:       RETURN
  355: *
  356: *     End of DSYTRS2
  357: *
  358:       END

CVSweb interface <joel.bertrand@systella.fr>