Annotation of rpl/lapack/lapack/dsytrs.f, revision 1.18

1.9       bertrand    1: *> \brief \b DSYTRS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DSYTRS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
1.15      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LDB, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                     30: *       ..
1.15      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DSYTRS solves a system of linear equations A*X = B with a real
                     39: *> symmetric matrix A using the factorization A = U*D*U**T or
                     40: *> A = L*D*L**T computed by DSYTRF.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] UPLO
                     47: *> \verbatim
                     48: *>          UPLO is CHARACTER*1
                     49: *>          Specifies whether the details of the factorization are stored
                     50: *>          as an upper or lower triangular matrix.
                     51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
                     52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The order of the matrix A.  N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] NRHS
                     62: *> \verbatim
                     63: *>          NRHS is INTEGER
                     64: *>          The number of right hand sides, i.e., the number of columns
                     65: *>          of the matrix B.  NRHS >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] A
                     69: *> \verbatim
                     70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     71: *>          The block diagonal matrix D and the multipliers used to
                     72: *>          obtain the factor U or L as computed by DSYTRF.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] IPIV
                     82: *> \verbatim
                     83: *>          IPIV is INTEGER array, dimension (N)
                     84: *>          Details of the interchanges and the block structure of D
                     85: *>          as determined by DSYTRF.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] B
                     89: *> \verbatim
                     90: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     91: *>          On entry, the right hand side matrix B.
                     92: *>          On exit, the solution matrix X.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDB
                     96: *> \verbatim
                     97: *>          LDB is INTEGER
                     98: *>          The leading dimension of the array B.  LDB >= max(1,N).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] INFO
                    102: *> \verbatim
                    103: *>          INFO is INTEGER
                    104: *>          = 0:  successful exit
                    105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    106: *> \endverbatim
                    107: *
                    108: *  Authors:
                    109: *  ========
                    110: *
1.15      bertrand  111: *> \author Univ. of Tennessee
                    112: *> \author Univ. of California Berkeley
                    113: *> \author Univ. of Colorado Denver
                    114: *> \author NAG Ltd.
1.9       bertrand  115: *
                    116: *> \ingroup doubleSYcomputational
                    117: *
                    118: *  =====================================================================
1.1       bertrand  119:       SUBROUTINE DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
                    120: *
1.18    ! bertrand  121: *  -- LAPACK computational routine --
1.1       bertrand  122: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    123: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    124: *
                    125: *     .. Scalar Arguments ..
                    126:       CHARACTER          UPLO
                    127:       INTEGER            INFO, LDA, LDB, N, NRHS
                    128: *     ..
                    129: *     .. Array Arguments ..
                    130:       INTEGER            IPIV( * )
                    131:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                    132: *     ..
                    133: *
                    134: *  =====================================================================
                    135: *
                    136: *     .. Parameters ..
                    137:       DOUBLE PRECISION   ONE
                    138:       PARAMETER          ( ONE = 1.0D+0 )
                    139: *     ..
                    140: *     .. Local Scalars ..
                    141:       LOGICAL            UPPER
                    142:       INTEGER            J, K, KP
                    143:       DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
                    144: *     ..
                    145: *     .. External Functions ..
                    146:       LOGICAL            LSAME
                    147:       EXTERNAL           LSAME
                    148: *     ..
                    149: *     .. External Subroutines ..
                    150:       EXTERNAL           DGEMV, DGER, DSCAL, DSWAP, XERBLA
                    151: *     ..
                    152: *     .. Intrinsic Functions ..
                    153:       INTRINSIC          MAX
                    154: *     ..
                    155: *     .. Executable Statements ..
                    156: *
                    157:       INFO = 0
                    158:       UPPER = LSAME( UPLO, 'U' )
                    159:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    160:          INFO = -1
                    161:       ELSE IF( N.LT.0 ) THEN
                    162:          INFO = -2
                    163:       ELSE IF( NRHS.LT.0 ) THEN
                    164:          INFO = -3
                    165:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    166:          INFO = -5
                    167:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    168:          INFO = -8
                    169:       END IF
                    170:       IF( INFO.NE.0 ) THEN
                    171:          CALL XERBLA( 'DSYTRS', -INFO )
                    172:          RETURN
                    173:       END IF
                    174: *
                    175: *     Quick return if possible
                    176: *
                    177:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
                    178:      $   RETURN
                    179: *
                    180:       IF( UPPER ) THEN
                    181: *
1.8       bertrand  182: *        Solve A*X = B, where A = U*D*U**T.
1.1       bertrand  183: *
                    184: *        First solve U*D*X = B, overwriting B with X.
                    185: *
                    186: *        K is the main loop index, decreasing from N to 1 in steps of
                    187: *        1 or 2, depending on the size of the diagonal blocks.
                    188: *
                    189:          K = N
                    190:    10    CONTINUE
                    191: *
                    192: *        If K < 1, exit from loop.
                    193: *
                    194:          IF( K.LT.1 )
                    195:      $      GO TO 30
                    196: *
                    197:          IF( IPIV( K ).GT.0 ) THEN
                    198: *
                    199: *           1 x 1 diagonal block
                    200: *
                    201: *           Interchange rows K and IPIV(K).
                    202: *
                    203:             KP = IPIV( K )
                    204:             IF( KP.NE.K )
                    205:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    206: *
                    207: *           Multiply by inv(U(K)), where U(K) is the transformation
                    208: *           stored in column K of A.
                    209: *
                    210:             CALL DGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
                    211:      $                 B( 1, 1 ), LDB )
                    212: *
                    213: *           Multiply by the inverse of the diagonal block.
                    214: *
                    215:             CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
                    216:             K = K - 1
                    217:          ELSE
                    218: *
                    219: *           2 x 2 diagonal block
                    220: *
                    221: *           Interchange rows K-1 and -IPIV(K).
                    222: *
                    223:             KP = -IPIV( K )
                    224:             IF( KP.NE.K-1 )
                    225:      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    226: *
                    227: *           Multiply by inv(U(K)), where U(K) is the transformation
                    228: *           stored in columns K-1 and K of A.
                    229: *
                    230:             CALL DGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
                    231:      $                 B( 1, 1 ), LDB )
                    232:             CALL DGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
                    233:      $                 LDB, B( 1, 1 ), LDB )
                    234: *
                    235: *           Multiply by the inverse of the diagonal block.
                    236: *
                    237:             AKM1K = A( K-1, K )
                    238:             AKM1 = A( K-1, K-1 ) / AKM1K
                    239:             AK = A( K, K ) / AKM1K
                    240:             DENOM = AKM1*AK - ONE
                    241:             DO 20 J = 1, NRHS
                    242:                BKM1 = B( K-1, J ) / AKM1K
                    243:                BK = B( K, J ) / AKM1K
                    244:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
                    245:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    246:    20       CONTINUE
                    247:             K = K - 2
                    248:          END IF
                    249: *
                    250:          GO TO 10
                    251:    30    CONTINUE
                    252: *
1.8       bertrand  253: *        Next solve U**T *X = B, overwriting B with X.
1.1       bertrand  254: *
                    255: *        K is the main loop index, increasing from 1 to N in steps of
                    256: *        1 or 2, depending on the size of the diagonal blocks.
                    257: *
                    258:          K = 1
                    259:    40    CONTINUE
                    260: *
                    261: *        If K > N, exit from loop.
                    262: *
                    263:          IF( K.GT.N )
                    264:      $      GO TO 50
                    265: *
                    266:          IF( IPIV( K ).GT.0 ) THEN
                    267: *
                    268: *           1 x 1 diagonal block
                    269: *
1.8       bertrand  270: *           Multiply by inv(U**T(K)), where U(K) is the transformation
1.1       bertrand  271: *           stored in column K of A.
                    272: *
                    273:             CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
                    274:      $                  1, ONE, B( K, 1 ), LDB )
                    275: *
                    276: *           Interchange rows K and IPIV(K).
                    277: *
                    278:             KP = IPIV( K )
                    279:             IF( KP.NE.K )
                    280:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    281:             K = K + 1
                    282:          ELSE
                    283: *
                    284: *           2 x 2 diagonal block
                    285: *
1.8       bertrand  286: *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
1.1       bertrand  287: *           stored in columns K and K+1 of A.
                    288: *
                    289:             CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
                    290:      $                  1, ONE, B( K, 1 ), LDB )
                    291:             CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
                    292:      $                  A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
                    293: *
                    294: *           Interchange rows K and -IPIV(K).
                    295: *
                    296:             KP = -IPIV( K )
                    297:             IF( KP.NE.K )
                    298:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    299:             K = K + 2
                    300:          END IF
                    301: *
                    302:          GO TO 40
                    303:    50    CONTINUE
                    304: *
                    305:       ELSE
                    306: *
1.8       bertrand  307: *        Solve A*X = B, where A = L*D*L**T.
1.1       bertrand  308: *
                    309: *        First solve L*D*X = B, overwriting B with X.
                    310: *
                    311: *        K is the main loop index, increasing from 1 to N in steps of
                    312: *        1 or 2, depending on the size of the diagonal blocks.
                    313: *
                    314:          K = 1
                    315:    60    CONTINUE
                    316: *
                    317: *        If K > N, exit from loop.
                    318: *
                    319:          IF( K.GT.N )
                    320:      $      GO TO 80
                    321: *
                    322:          IF( IPIV( K ).GT.0 ) THEN
                    323: *
                    324: *           1 x 1 diagonal block
                    325: *
                    326: *           Interchange rows K and IPIV(K).
                    327: *
                    328:             KP = IPIV( K )
                    329:             IF( KP.NE.K )
                    330:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    331: *
                    332: *           Multiply by inv(L(K)), where L(K) is the transformation
                    333: *           stored in column K of A.
                    334: *
                    335:             IF( K.LT.N )
                    336:      $         CALL DGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
                    337:      $                    LDB, B( K+1, 1 ), LDB )
                    338: *
                    339: *           Multiply by the inverse of the diagonal block.
                    340: *
                    341:             CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
                    342:             K = K + 1
                    343:          ELSE
                    344: *
                    345: *           2 x 2 diagonal block
                    346: *
                    347: *           Interchange rows K+1 and -IPIV(K).
                    348: *
                    349:             KP = -IPIV( K )
                    350:             IF( KP.NE.K+1 )
                    351:      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    352: *
                    353: *           Multiply by inv(L(K)), where L(K) is the transformation
                    354: *           stored in columns K and K+1 of A.
                    355: *
                    356:             IF( K.LT.N-1 ) THEN
                    357:                CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
                    358:      $                    LDB, B( K+2, 1 ), LDB )
                    359:                CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
                    360:      $                    B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
                    361:             END IF
                    362: *
                    363: *           Multiply by the inverse of the diagonal block.
                    364: *
                    365:             AKM1K = A( K+1, K )
                    366:             AKM1 = A( K, K ) / AKM1K
                    367:             AK = A( K+1, K+1 ) / AKM1K
                    368:             DENOM = AKM1*AK - ONE
                    369:             DO 70 J = 1, NRHS
                    370:                BKM1 = B( K, J ) / AKM1K
                    371:                BK = B( K+1, J ) / AKM1K
                    372:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
                    373:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    374:    70       CONTINUE
                    375:             K = K + 2
                    376:          END IF
                    377: *
                    378:          GO TO 60
                    379:    80    CONTINUE
                    380: *
1.8       bertrand  381: *        Next solve L**T *X = B, overwriting B with X.
1.1       bertrand  382: *
                    383: *        K is the main loop index, decreasing from N to 1 in steps of
                    384: *        1 or 2, depending on the size of the diagonal blocks.
                    385: *
                    386:          K = N
                    387:    90    CONTINUE
                    388: *
                    389: *        If K < 1, exit from loop.
                    390: *
                    391:          IF( K.LT.1 )
                    392:      $      GO TO 100
                    393: *
                    394:          IF( IPIV( K ).GT.0 ) THEN
                    395: *
                    396: *           1 x 1 diagonal block
                    397: *
1.8       bertrand  398: *           Multiply by inv(L**T(K)), where L(K) is the transformation
1.1       bertrand  399: *           stored in column K of A.
                    400: *
                    401:             IF( K.LT.N )
                    402:      $         CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
                    403:      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
                    404: *
                    405: *           Interchange rows K and IPIV(K).
                    406: *
                    407:             KP = IPIV( K )
                    408:             IF( KP.NE.K )
                    409:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    410:             K = K - 1
                    411:          ELSE
                    412: *
                    413: *           2 x 2 diagonal block
                    414: *
1.8       bertrand  415: *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
1.1       bertrand  416: *           stored in columns K-1 and K of A.
                    417: *
                    418:             IF( K.LT.N ) THEN
                    419:                CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
                    420:      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
                    421:                CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
                    422:      $                     LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ),
                    423:      $                     LDB )
                    424:             END IF
                    425: *
                    426: *           Interchange rows K and -IPIV(K).
                    427: *
                    428:             KP = -IPIV( K )
                    429:             IF( KP.NE.K )
                    430:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    431:             K = K - 2
                    432:          END IF
                    433: *
                    434:          GO TO 90
                    435:   100    CONTINUE
                    436:       END IF
                    437: *
                    438:       RETURN
                    439: *
                    440: *     End of DSYTRS
                    441: *
                    442:       END

CVSweb interface <joel.bertrand@systella.fr>