File:  [local] / rpl / lapack / lapack / dsytri_rook.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:11 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTRI_ROOK
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRI_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYTRI_ROOK computes the inverse of a real symmetric
   39: *> matrix A using the factorization A = U*D*U**T or A = L*D*L**T
   40: *> computed by DSYTRF_ROOK.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] A
   62: *> \verbatim
   63: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   64: *>          On entry, the block diagonal matrix D and the multipliers
   65: *>          used to obtain the factor U or L as computed by DSYTRF_ROOK.
   66: *>
   67: *>          On exit, if INFO = 0, the (symmetric) inverse of the original
   68: *>          matrix.  If UPLO = 'U', the upper triangular part of the
   69: *>          inverse is formed and the part of A below the diagonal is not
   70: *>          referenced; if UPLO = 'L' the lower triangular part of the
   71: *>          inverse is formed and the part of A above the diagonal is
   72: *>          not referenced.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by DSYTRF_ROOK.
   86: *> \endverbatim
   87: *>
   88: *> \param[out] WORK
   89: *> \verbatim
   90: *>          WORK is DOUBLE PRECISION array, dimension (N)
   91: *> \endverbatim
   92: *>
   93: *> \param[out] INFO
   94: *> \verbatim
   95: *>          INFO is INTEGER
   96: *>          = 0: successful exit
   97: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   98: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   99: *>               inverse could not be computed.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee
  106: *> \author Univ. of California Berkeley
  107: *> \author Univ. of Colorado Denver
  108: *> \author NAG Ltd.
  109: *
  110: *> \ingroup doubleSYcomputational
  111: *
  112: *> \par Contributors:
  113: *  ==================
  114: *>
  115: *> \verbatim
  116: *>
  117: *>   April 2012, Igor Kozachenko,
  118: *>                  Computer Science Division,
  119: *>                  University of California, Berkeley
  120: *>
  121: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  122: *>                  School of Mathematics,
  123: *>                  University of Manchester
  124: *>
  125: *> \endverbatim
  126: *
  127: *  =====================================================================
  128:       SUBROUTINE DSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
  129: *
  130: *  -- LAPACK computational routine --
  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133: *
  134: *     .. Scalar Arguments ..
  135:       CHARACTER          UPLO
  136:       INTEGER            INFO, LDA, N
  137: *     ..
  138: *     .. Array Arguments ..
  139:       INTEGER            IPIV( * )
  140:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
  141: *     ..
  142: *
  143: *  =====================================================================
  144: *
  145: *     .. Parameters ..
  146:       DOUBLE PRECISION   ONE, ZERO
  147:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  148: *     ..
  149: *     .. Local Scalars ..
  150:       LOGICAL            UPPER
  151:       INTEGER            K, KP, KSTEP
  152:       DOUBLE PRECISION   AK, AKKP1, AKP1, D, T, TEMP
  153: *     ..
  154: *     .. External Functions ..
  155:       LOGICAL            LSAME
  156:       DOUBLE PRECISION   DDOT
  157:       EXTERNAL           LSAME, DDOT
  158: *     ..
  159: *     .. External Subroutines ..
  160:       EXTERNAL           DCOPY, DSWAP, DSYMV, XERBLA
  161: *     ..
  162: *     .. Intrinsic Functions ..
  163:       INTRINSIC          ABS, MAX
  164: *     ..
  165: *     .. Executable Statements ..
  166: *
  167: *     Test the input parameters.
  168: *
  169:       INFO = 0
  170:       UPPER = LSAME( UPLO, 'U' )
  171:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  172:          INFO = -1
  173:       ELSE IF( N.LT.0 ) THEN
  174:          INFO = -2
  175:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  176:          INFO = -4
  177:       END IF
  178:       IF( INFO.NE.0 ) THEN
  179:          CALL XERBLA( 'DSYTRI_ROOK', -INFO )
  180:          RETURN
  181:       END IF
  182: *
  183: *     Quick return if possible
  184: *
  185:       IF( N.EQ.0 )
  186:      $   RETURN
  187: *
  188: *     Check that the diagonal matrix D is nonsingular.
  189: *
  190:       IF( UPPER ) THEN
  191: *
  192: *        Upper triangular storage: examine D from bottom to top
  193: *
  194:          DO 10 INFO = N, 1, -1
  195:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  196:      $         RETURN
  197:    10    CONTINUE
  198:       ELSE
  199: *
  200: *        Lower triangular storage: examine D from top to bottom.
  201: *
  202:          DO 20 INFO = 1, N
  203:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  204:      $         RETURN
  205:    20    CONTINUE
  206:       END IF
  207:       INFO = 0
  208: *
  209:       IF( UPPER ) THEN
  210: *
  211: *        Compute inv(A) from the factorization A = U*D*U**T.
  212: *
  213: *        K is the main loop index, increasing from 1 to N in steps of
  214: *        1 or 2, depending on the size of the diagonal blocks.
  215: *
  216:          K = 1
  217:    30    CONTINUE
  218: *
  219: *        If K > N, exit from loop.
  220: *
  221:          IF( K.GT.N )
  222:      $      GO TO 40
  223: *
  224:          IF( IPIV( K ).GT.0 ) THEN
  225: *
  226: *           1 x 1 diagonal block
  227: *
  228: *           Invert the diagonal block.
  229: *
  230:             A( K, K ) = ONE / A( K, K )
  231: *
  232: *           Compute column K of the inverse.
  233: *
  234:             IF( K.GT.1 ) THEN
  235:                CALL DCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  236:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  237:      $                     A( 1, K ), 1 )
  238:                A( K, K ) = A( K, K ) - DDOT( K-1, WORK, 1, A( 1, K ),
  239:      $                     1 )
  240:             END IF
  241:             KSTEP = 1
  242:          ELSE
  243: *
  244: *           2 x 2 diagonal block
  245: *
  246: *           Invert the diagonal block.
  247: *
  248:             T = ABS( A( K, K+1 ) )
  249:             AK = A( K, K ) / T
  250:             AKP1 = A( K+1, K+1 ) / T
  251:             AKKP1 = A( K, K+1 ) / T
  252:             D = T*( AK*AKP1-ONE )
  253:             A( K, K ) = AKP1 / D
  254:             A( K+1, K+1 ) = AK / D
  255:             A( K, K+1 ) = -AKKP1 / D
  256: *
  257: *           Compute columns K and K+1 of the inverse.
  258: *
  259:             IF( K.GT.1 ) THEN
  260:                CALL DCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  261:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  262:      $                     A( 1, K ), 1 )
  263:                A( K, K ) = A( K, K ) - DDOT( K-1, WORK, 1, A( 1, K ),
  264:      $                     1 )
  265:                A( K, K+1 ) = A( K, K+1 ) -
  266:      $                       DDOT( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
  267:                CALL DCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
  268:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  269:      $                     A( 1, K+1 ), 1 )
  270:                A( K+1, K+1 ) = A( K+1, K+1 ) -
  271:      $                         DDOT( K-1, WORK, 1, A( 1, K+1 ), 1 )
  272:             END IF
  273:             KSTEP = 2
  274:          END IF
  275: *
  276:          IF( KSTEP.EQ.1 ) THEN
  277: *
  278: *           Interchange rows and columns K and IPIV(K) in the leading
  279: *           submatrix A(1:k+1,1:k+1)
  280: *
  281:             KP = IPIV( K )
  282:             IF( KP.NE.K ) THEN
  283:                IF( KP.GT.1 )
  284:      $             CALL DSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  285:                CALL DSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  286:                TEMP = A( K, K )
  287:                A( K, K ) = A( KP, KP )
  288:                A( KP, KP ) = TEMP
  289:             END IF
  290:          ELSE
  291: *
  292: *           Interchange rows and columns K and K+1 with -IPIV(K) and
  293: *           -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1)
  294: *
  295:             KP = -IPIV( K )
  296:             IF( KP.NE.K ) THEN
  297:                IF( KP.GT.1 )
  298:      $            CALL DSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  299:                CALL DSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  300: *
  301:                TEMP = A( K, K )
  302:                A( K, K ) = A( KP, KP )
  303:                A( KP, KP ) = TEMP
  304:                TEMP = A( K, K+1 )
  305:                A( K, K+1 ) = A( KP, K+1 )
  306:                A( KP, K+1 ) = TEMP
  307:             END IF
  308: *
  309:             K = K + 1
  310:             KP = -IPIV( K )
  311:             IF( KP.NE.K ) THEN
  312:                IF( KP.GT.1 )
  313:      $            CALL DSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  314:                CALL DSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  315:                TEMP = A( K, K )
  316:                A( K, K ) = A( KP, KP )
  317:                A( KP, KP ) = TEMP
  318:             END IF
  319:          END IF
  320: *
  321:          K = K + 1
  322:          GO TO 30
  323:    40    CONTINUE
  324: *
  325:       ELSE
  326: *
  327: *        Compute inv(A) from the factorization A = L*D*L**T.
  328: *
  329: *        K is the main loop index, increasing from 1 to N in steps of
  330: *        1 or 2, depending on the size of the diagonal blocks.
  331: *
  332:          K = N
  333:    50    CONTINUE
  334: *
  335: *        If K < 1, exit from loop.
  336: *
  337:          IF( K.LT.1 )
  338:      $      GO TO 60
  339: *
  340:          IF( IPIV( K ).GT.0 ) THEN
  341: *
  342: *           1 x 1 diagonal block
  343: *
  344: *           Invert the diagonal block.
  345: *
  346:             A( K, K ) = ONE / A( K, K )
  347: *
  348: *           Compute column K of the inverse.
  349: *
  350:             IF( K.LT.N ) THEN
  351:                CALL DCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  352:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  353:      $                     ZERO, A( K+1, K ), 1 )
  354:                A( K, K ) = A( K, K ) - DDOT( N-K, WORK, 1, A( K+1, K ),
  355:      $                     1 )
  356:             END IF
  357:             KSTEP = 1
  358:          ELSE
  359: *
  360: *           2 x 2 diagonal block
  361: *
  362: *           Invert the diagonal block.
  363: *
  364:             T = ABS( A( K, K-1 ) )
  365:             AK = A( K-1, K-1 ) / T
  366:             AKP1 = A( K, K ) / T
  367:             AKKP1 = A( K, K-1 ) / T
  368:             D = T*( AK*AKP1-ONE )
  369:             A( K-1, K-1 ) = AKP1 / D
  370:             A( K, K ) = AK / D
  371:             A( K, K-1 ) = -AKKP1 / D
  372: *
  373: *           Compute columns K-1 and K of the inverse.
  374: *
  375:             IF( K.LT.N ) THEN
  376:                CALL DCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  377:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  378:      $                     ZERO, A( K+1, K ), 1 )
  379:                A( K, K ) = A( K, K ) - DDOT( N-K, WORK, 1, A( K+1, K ),
  380:      $                     1 )
  381:                A( K, K-1 ) = A( K, K-1 ) -
  382:      $                       DDOT( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
  383:      $                       1 )
  384:                CALL DCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
  385:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  386:      $                     ZERO, A( K+1, K-1 ), 1 )
  387:                A( K-1, K-1 ) = A( K-1, K-1 ) -
  388:      $                         DDOT( N-K, WORK, 1, A( K+1, K-1 ), 1 )
  389:             END IF
  390:             KSTEP = 2
  391:          END IF
  392: *
  393:          IF( KSTEP.EQ.1 ) THEN
  394: *
  395: *           Interchange rows and columns K and IPIV(K) in the trailing
  396: *           submatrix A(k-1:n,k-1:n)
  397: *
  398:             KP = IPIV( K )
  399:             IF( KP.NE.K ) THEN
  400:                IF( KP.LT.N )
  401:      $            CALL DSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  402:                CALL DSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  403:                TEMP = A( K, K )
  404:                A( K, K ) = A( KP, KP )
  405:                A( KP, KP ) = TEMP
  406:             END IF
  407:          ELSE
  408: *
  409: *           Interchange rows and columns K and K-1 with -IPIV(K) and
  410: *           -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n)
  411: *
  412:             KP = -IPIV( K )
  413:             IF( KP.NE.K ) THEN
  414:                IF( KP.LT.N )
  415:      $            CALL DSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  416:                CALL DSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  417: *
  418:                TEMP = A( K, K )
  419:                A( K, K ) = A( KP, KP )
  420:                A( KP, KP ) = TEMP
  421:                TEMP = A( K, K-1 )
  422:                A( K, K-1 ) = A( KP, K-1 )
  423:                A( KP, K-1 ) = TEMP
  424:             END IF
  425: *
  426:             K = K - 1
  427:             KP = -IPIV( K )
  428:             IF( KP.NE.K ) THEN
  429:                IF( KP.LT.N )
  430:      $            CALL DSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  431:                CALL DSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  432:                TEMP = A( K, K )
  433:                A( K, K ) = A( KP, KP )
  434:                A( KP, KP ) = TEMP
  435:             END IF
  436:          END IF
  437: *
  438:          K = K - 1
  439:          GO TO 50
  440:    60    CONTINUE
  441:       END IF
  442: *
  443:       RETURN
  444: *
  445: *     End of DSYTRI_ROOK
  446: *
  447:       END

CVSweb interface <joel.bertrand@systella.fr>