File:  [local] / rpl / lapack / lapack / dsytri_rook.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:34:40 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Lapack.

    1: *> \brief \b DSYTRI_ROOK
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRI_ROOK + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri_rook.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri_rook.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri_rook.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYTRI_ROOK computes the inverse of a real symmetric
   39: *> matrix A using the factorization A = U*D*U**T or A = L*D*L**T
   40: *> computed by DSYTRF_ROOK.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] A
   62: *> \verbatim
   63: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   64: *>          On entry, the block diagonal matrix D and the multipliers
   65: *>          used to obtain the factor U or L as computed by DSYTRF_ROOK.
   66: *>
   67: *>          On exit, if INFO = 0, the (symmetric) inverse of the original
   68: *>          matrix.  If UPLO = 'U', the upper triangular part of the
   69: *>          inverse is formed and the part of A below the diagonal is not
   70: *>          referenced; if UPLO = 'L' the lower triangular part of the
   71: *>          inverse is formed and the part of A above the diagonal is
   72: *>          not referenced.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by DSYTRF_ROOK.
   86: *> \endverbatim
   87: *>
   88: *> \param[out] WORK
   89: *> \verbatim
   90: *>          WORK is DOUBLE PRECISION array, dimension (N)
   91: *> \endverbatim
   92: *>
   93: *> \param[out] INFO
   94: *> \verbatim
   95: *>          INFO is INTEGER
   96: *>          = 0: successful exit
   97: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   98: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   99: *>               inverse could not be computed.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee 
  106: *> \author Univ. of California Berkeley 
  107: *> \author Univ. of Colorado Denver 
  108: *> \author NAG Ltd. 
  109: *
  110: *> \date April 2012
  111: *
  112: *> \ingroup doubleSYcomputational
  113: *
  114: *> \par Contributors:
  115: *  ==================
  116: *>
  117: *> \verbatim
  118: *>
  119: *>   April 2012, Igor Kozachenko,
  120: *>                  Computer Science Division,
  121: *>                  University of California, Berkeley
  122: *>
  123: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  124: *>                  School of Mathematics,
  125: *>                  University of Manchester
  126: *>
  127: *> \endverbatim
  128: *
  129: *  =====================================================================
  130:       SUBROUTINE DSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
  131: *
  132: *  -- LAPACK computational routine (version 3.4.1) --
  133: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  134: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135: *     April 2012
  136: *
  137: *     .. Scalar Arguments ..
  138:       CHARACTER          UPLO
  139:       INTEGER            INFO, LDA, N
  140: *     ..
  141: *     .. Array Arguments ..
  142:       INTEGER            IPIV( * )
  143:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
  144: *     ..
  145: *
  146: *  =====================================================================
  147: *
  148: *     .. Parameters ..
  149:       DOUBLE PRECISION   ONE, ZERO
  150:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  151: *     ..
  152: *     .. Local Scalars ..
  153:       LOGICAL            UPPER
  154:       INTEGER            K, KP, KSTEP
  155:       DOUBLE PRECISION   AK, AKKP1, AKP1, D, T, TEMP
  156: *     ..
  157: *     .. External Functions ..
  158:       LOGICAL            LSAME
  159:       DOUBLE PRECISION   DDOT
  160:       EXTERNAL           LSAME, DDOT
  161: *     ..
  162: *     .. External Subroutines ..
  163:       EXTERNAL           DCOPY, DSWAP, DSYMV, XERBLA
  164: *     ..
  165: *     .. Intrinsic Functions ..
  166:       INTRINSIC          ABS, MAX
  167: *     ..
  168: *     .. Executable Statements ..
  169: *
  170: *     Test the input parameters.
  171: *
  172:       INFO = 0
  173:       UPPER = LSAME( UPLO, 'U' )
  174:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  175:          INFO = -1
  176:       ELSE IF( N.LT.0 ) THEN
  177:          INFO = -2
  178:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  179:          INFO = -4
  180:       END IF
  181:       IF( INFO.NE.0 ) THEN
  182:          CALL XERBLA( 'DSYTRI_ROOK', -INFO )
  183:          RETURN
  184:       END IF
  185: *
  186: *     Quick return if possible
  187: *
  188:       IF( N.EQ.0 )
  189:      $   RETURN
  190: *
  191: *     Check that the diagonal matrix D is nonsingular.
  192: *
  193:       IF( UPPER ) THEN
  194: *
  195: *        Upper triangular storage: examine D from bottom to top
  196: *
  197:          DO 10 INFO = N, 1, -1
  198:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  199:      $         RETURN
  200:    10    CONTINUE
  201:       ELSE
  202: *
  203: *        Lower triangular storage: examine D from top to bottom.
  204: *
  205:          DO 20 INFO = 1, N
  206:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  207:      $         RETURN
  208:    20    CONTINUE
  209:       END IF
  210:       INFO = 0
  211: *
  212:       IF( UPPER ) THEN
  213: *
  214: *        Compute inv(A) from the factorization A = U*D*U**T.
  215: *
  216: *        K is the main loop index, increasing from 1 to N in steps of
  217: *        1 or 2, depending on the size of the diagonal blocks.
  218: *
  219:          K = 1
  220:    30    CONTINUE
  221: *
  222: *        If K > N, exit from loop.
  223: *
  224:          IF( K.GT.N )
  225:      $      GO TO 40
  226: *
  227:          IF( IPIV( K ).GT.0 ) THEN
  228: *
  229: *           1 x 1 diagonal block
  230: *
  231: *           Invert the diagonal block.
  232: *
  233:             A( K, K ) = ONE / A( K, K )
  234: *
  235: *           Compute column K of the inverse.
  236: *
  237:             IF( K.GT.1 ) THEN
  238:                CALL DCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  239:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  240:      $                     A( 1, K ), 1 )
  241:                A( K, K ) = A( K, K ) - DDOT( K-1, WORK, 1, A( 1, K ),
  242:      $                     1 )
  243:             END IF
  244:             KSTEP = 1
  245:          ELSE
  246: *
  247: *           2 x 2 diagonal block
  248: *
  249: *           Invert the diagonal block.
  250: *
  251:             T = ABS( A( K, K+1 ) )
  252:             AK = A( K, K ) / T
  253:             AKP1 = A( K+1, K+1 ) / T
  254:             AKKP1 = A( K, K+1 ) / T
  255:             D = T*( AK*AKP1-ONE )
  256:             A( K, K ) = AKP1 / D
  257:             A( K+1, K+1 ) = AK / D
  258:             A( K, K+1 ) = -AKKP1 / D
  259: *
  260: *           Compute columns K and K+1 of the inverse.
  261: *
  262:             IF( K.GT.1 ) THEN
  263:                CALL DCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  264:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  265:      $                     A( 1, K ), 1 )
  266:                A( K, K ) = A( K, K ) - DDOT( K-1, WORK, 1, A( 1, K ),
  267:      $                     1 )
  268:                A( K, K+1 ) = A( K, K+1 ) -
  269:      $                       DDOT( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
  270:                CALL DCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
  271:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  272:      $                     A( 1, K+1 ), 1 )
  273:                A( K+1, K+1 ) = A( K+1, K+1 ) -
  274:      $                         DDOT( K-1, WORK, 1, A( 1, K+1 ), 1 )
  275:             END IF
  276:             KSTEP = 2
  277:          END IF
  278: *
  279:          IF( KSTEP.EQ.1 ) THEN
  280: *
  281: *           Interchange rows and columns K and IPIV(K) in the leading
  282: *           submatrix A(1:k+1,1:k+1)
  283: *
  284:             KP = IPIV( K )
  285:             IF( KP.NE.K ) THEN
  286:                IF( KP.GT.1 )
  287:      $             CALL DSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  288:                CALL DSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  289:                TEMP = A( K, K )
  290:                A( K, K ) = A( KP, KP )
  291:                A( KP, KP ) = TEMP
  292:             END IF
  293:          ELSE
  294: *
  295: *           Interchange rows and columns K and K+1 with -IPIV(K) and
  296: *           -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1)
  297: *
  298:             KP = -IPIV( K )
  299:             IF( KP.NE.K ) THEN
  300:                IF( KP.GT.1 )
  301:      $            CALL DSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  302:                CALL DSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  303: *               
  304:                TEMP = A( K, K )
  305:                A( K, K ) = A( KP, KP )
  306:                A( KP, KP ) = TEMP
  307:                TEMP = A( K, K+1 )
  308:                A( K, K+1 ) = A( KP, K+1 )
  309:                A( KP, K+1 ) = TEMP
  310:             END IF
  311: *
  312:             K = K + 1
  313:             KP = -IPIV( K )
  314:             IF( KP.NE.K ) THEN
  315:                IF( KP.GT.1 )
  316:      $            CALL DSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  317:                CALL DSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  318:                TEMP = A( K, K )
  319:                A( K, K ) = A( KP, KP )
  320:                A( KP, KP ) = TEMP
  321:             END IF
  322:          END IF
  323: *
  324:          K = K + 1
  325:          GO TO 30
  326:    40    CONTINUE
  327: *
  328:       ELSE
  329: *
  330: *        Compute inv(A) from the factorization A = L*D*L**T.
  331: *
  332: *        K is the main loop index, increasing from 1 to N in steps of
  333: *        1 or 2, depending on the size of the diagonal blocks.
  334: *
  335:          K = N
  336:    50    CONTINUE
  337: *
  338: *        If K < 1, exit from loop.
  339: *
  340:          IF( K.LT.1 )
  341:      $      GO TO 60
  342: *
  343:          IF( IPIV( K ).GT.0 ) THEN
  344: *
  345: *           1 x 1 diagonal block
  346: *
  347: *           Invert the diagonal block.
  348: *
  349:             A( K, K ) = ONE / A( K, K )
  350: *
  351: *           Compute column K of the inverse.
  352: *
  353:             IF( K.LT.N ) THEN
  354:                CALL DCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  355:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  356:      $                     ZERO, A( K+1, K ), 1 )
  357:                A( K, K ) = A( K, K ) - DDOT( N-K, WORK, 1, A( K+1, K ),
  358:      $                     1 )
  359:             END IF
  360:             KSTEP = 1
  361:          ELSE
  362: *
  363: *           2 x 2 diagonal block
  364: *
  365: *           Invert the diagonal block.
  366: *
  367:             T = ABS( A( K, K-1 ) )
  368:             AK = A( K-1, K-1 ) / T
  369:             AKP1 = A( K, K ) / T
  370:             AKKP1 = A( K, K-1 ) / T
  371:             D = T*( AK*AKP1-ONE )
  372:             A( K-1, K-1 ) = AKP1 / D
  373:             A( K, K ) = AK / D
  374:             A( K, K-1 ) = -AKKP1 / D
  375: *
  376: *           Compute columns K-1 and K of the inverse.
  377: *
  378:             IF( K.LT.N ) THEN
  379:                CALL DCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  380:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  381:      $                     ZERO, A( K+1, K ), 1 )
  382:                A( K, K ) = A( K, K ) - DDOT( N-K, WORK, 1, A( K+1, K ),
  383:      $                     1 )
  384:                A( K, K-1 ) = A( K, K-1 ) -
  385:      $                       DDOT( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
  386:      $                       1 )
  387:                CALL DCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
  388:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  389:      $                     ZERO, A( K+1, K-1 ), 1 )
  390:                A( K-1, K-1 ) = A( K-1, K-1 ) -
  391:      $                         DDOT( N-K, WORK, 1, A( K+1, K-1 ), 1 )
  392:             END IF
  393:             KSTEP = 2
  394:          END IF  
  395: *
  396:          IF( KSTEP.EQ.1 ) THEN
  397: *
  398: *           Interchange rows and columns K and IPIV(K) in the trailing
  399: *           submatrix A(k-1:n,k-1:n)
  400: *
  401:             KP = IPIV( K )
  402:             IF( KP.NE.K ) THEN
  403:                IF( KP.LT.N )
  404:      $            CALL DSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  405:                CALL DSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  406:                TEMP = A( K, K )
  407:                A( K, K ) = A( KP, KP )
  408:                A( KP, KP ) = TEMP
  409:             END IF
  410:          ELSE
  411: *
  412: *           Interchange rows and columns K and K-1 with -IPIV(K) and
  413: *           -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n)
  414: *
  415:             KP = -IPIV( K )
  416:             IF( KP.NE.K ) THEN
  417:                IF( KP.LT.N )
  418:      $            CALL DSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  419:                CALL DSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  420: *
  421:                TEMP = A( K, K )
  422:                A( K, K ) = A( KP, KP )
  423:                A( KP, KP ) = TEMP
  424:                TEMP = A( K, K-1 )
  425:                A( K, K-1 ) = A( KP, K-1 )
  426:                A( KP, K-1 ) = TEMP
  427:             END IF
  428: *
  429:             K = K - 1
  430:             KP = -IPIV( K )
  431:             IF( KP.NE.K ) THEN
  432:                IF( KP.LT.N )
  433:      $            CALL DSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  434:                CALL DSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  435:                TEMP = A( K, K )
  436:                A( K, K ) = A( KP, KP )
  437:                A( KP, KP ) = TEMP
  438:             END IF
  439:          END IF
  440: *
  441:          K = K - 1
  442:          GO TO 50
  443:    60    CONTINUE
  444:       END IF
  445: *
  446:       RETURN
  447: *
  448: *     End of DSYTRI_ROOK
  449: *
  450:       END

CVSweb interface <joel.bertrand@systella.fr>