File:  [local] / rpl / lapack / lapack / dsytri_3x.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:11 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTRI_3X
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRI_3X + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri_3x.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri_3x.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri_3x.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ),  E( * ), WORK( N+NB+1, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *> DSYTRI_3X computes the inverse of a real symmetric indefinite
   38: *> matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK:
   39: *>
   40: *>     A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
   41: *>
   42: *> where U (or L) is unit upper (or lower) triangular matrix,
   43: *> U**T (or L**T) is the transpose of U (or L), P is a permutation
   44: *> matrix, P**T is the transpose of P, and D is symmetric and block
   45: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the details of the factorization are
   57: *>          stored as an upper or lower triangular matrix.
   58: *>          = 'U':  Upper triangle of A is stored;
   59: *>          = 'L':  Lower triangle of A is stored.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   71: *>          On entry, diagonal of the block diagonal matrix D and
   72: *>          factors U or L as computed by DSYTRF_RK and DSYTRF_BK:
   73: *>            a) ONLY diagonal elements of the symmetric block diagonal
   74: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
   75: *>               (superdiagonal (or subdiagonal) elements of D
   76: *>                should be provided on entry in array E), and
   77: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
   78: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
   79: *>
   80: *>          On exit, if INFO = 0, the symmetric inverse of the original
   81: *>          matrix.
   82: *>             If UPLO = 'U': the upper triangular part of the inverse
   83: *>             is formed and the part of A below the diagonal is not
   84: *>             referenced;
   85: *>             If UPLO = 'L': the lower triangular part of the inverse
   86: *>             is formed and the part of A above the diagonal is not
   87: *>             referenced.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDA
   91: *> \verbatim
   92: *>          LDA is INTEGER
   93: *>          The leading dimension of the array A.  LDA >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[in] E
   97: *> \verbatim
   98: *>          E is DOUBLE PRECISION array, dimension (N)
   99: *>          On entry, contains the superdiagonal (or subdiagonal)
  100: *>          elements of the symmetric block diagonal matrix D
  101: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  102: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
  103: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
  104: *>
  105: *>          NOTE: For 1-by-1 diagonal block D(k), where
  106: *>          1 <= k <= N, the element E(k) is not referenced in both
  107: *>          UPLO = 'U' or UPLO = 'L' cases.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] IPIV
  111: *> \verbatim
  112: *>          IPIV is INTEGER array, dimension (N)
  113: *>          Details of the interchanges and the block structure of D
  114: *>          as determined by DSYTRF_RK or DSYTRF_BK.
  115: *> \endverbatim
  116: *>
  117: *> \param[out] WORK
  118: *> \verbatim
  119: *>          WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3).
  120: *> \endverbatim
  121: *>
  122: *> \param[in] NB
  123: *> \verbatim
  124: *>          NB is INTEGER
  125: *>          Block size.
  126: *> \endverbatim
  127: *>
  128: *> \param[out] INFO
  129: *> \verbatim
  130: *>          INFO is INTEGER
  131: *>          = 0: successful exit
  132: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  133: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  134: *>               inverse could not be computed.
  135: *> \endverbatim
  136: *
  137: *  Authors:
  138: *  ========
  139: *
  140: *> \author Univ. of Tennessee
  141: *> \author Univ. of California Berkeley
  142: *> \author Univ. of Colorado Denver
  143: *> \author NAG Ltd.
  144: *
  145: *> \ingroup doubleSYcomputational
  146: *
  147: *> \par Contributors:
  148: *  ==================
  149: *> \verbatim
  150: *>
  151: *>  June 2017,  Igor Kozachenko,
  152: *>                  Computer Science Division,
  153: *>                  University of California, Berkeley
  154: *>
  155: *> \endverbatim
  156: *
  157: *  =====================================================================
  158:       SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  159: *
  160: *  -- LAPACK computational routine --
  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163: *
  164: *     .. Scalar Arguments ..
  165:       CHARACTER          UPLO
  166:       INTEGER            INFO, LDA, N, NB
  167: *     ..
  168: *     .. Array Arguments ..
  169:       INTEGER            IPIV( * )
  170:       DOUBLE PRECISION   A( LDA, * ), E( * ), WORK( N+NB+1, * )
  171: *     ..
  172: *
  173: *  =====================================================================
  174: *
  175: *     .. Parameters ..
  176:       DOUBLE PRECISION   ONE, ZERO
  177:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  178: *     ..
  179: *     .. Local Scalars ..
  180:       LOGICAL            UPPER
  181:       INTEGER            CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
  182:       DOUBLE PRECISION   AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J,
  183:      $                   U11_I_J, U11_IP1_J
  184: *     ..
  185: *     .. External Functions ..
  186:       LOGICAL            LSAME
  187:       EXTERNAL           LSAME
  188: *     ..
  189: *     .. External Subroutines ..
  190:       EXTERNAL           DGEMM, DSYSWAPR, DTRTRI, DTRMM, XERBLA
  191: *     ..
  192: *     .. Intrinsic Functions ..
  193:       INTRINSIC          ABS, MAX, MOD
  194: *     ..
  195: *     .. Executable Statements ..
  196: *
  197: *     Test the input parameters.
  198: *
  199:       INFO = 0
  200:       UPPER = LSAME( UPLO, 'U' )
  201:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  202:          INFO = -1
  203:       ELSE IF( N.LT.0 ) THEN
  204:          INFO = -2
  205:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  206:          INFO = -4
  207:       END IF
  208: *
  209: *     Quick return if possible
  210: *
  211:       IF( INFO.NE.0 ) THEN
  212:          CALL XERBLA( 'DSYTRI_3X', -INFO )
  213:          RETURN
  214:       END IF
  215:       IF( N.EQ.0 )
  216:      $   RETURN
  217: *
  218: *     Workspace got Non-diag elements of D
  219: *
  220:       DO K = 1, N
  221:          WORK( K, 1 ) = E( K )
  222:       END DO
  223: *
  224: *     Check that the diagonal matrix D is nonsingular.
  225: *
  226:       IF( UPPER ) THEN
  227: *
  228: *        Upper triangular storage: examine D from bottom to top
  229: *
  230:          DO INFO = N, 1, -1
  231:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  232:      $         RETURN
  233:          END DO
  234:       ELSE
  235: *
  236: *        Lower triangular storage: examine D from top to bottom.
  237: *
  238:          DO INFO = 1, N
  239:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  240:      $         RETURN
  241:          END DO
  242:       END IF
  243: *
  244:       INFO = 0
  245: *
  246: *     Splitting Workspace
  247: *     U01 is a block ( N, NB+1 )
  248: *     The first element of U01 is in WORK( 1, 1 )
  249: *     U11 is a block ( NB+1, NB+1 )
  250: *     The first element of U11 is in WORK( N+1, 1 )
  251: *
  252:       U11 = N
  253: *
  254: *     INVD is a block ( N, 2 )
  255: *     The first element of INVD is in WORK( 1, INVD )
  256: *
  257:       INVD = NB + 2
  258: 
  259:       IF( UPPER ) THEN
  260: *
  261: *        Begin Upper
  262: *
  263: *        invA = P * inv(U**T) * inv(D) * inv(U) * P**T.
  264: *
  265:          CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO )
  266: *
  267: *        inv(D) and inv(D) * inv(U)
  268: *
  269:          K = 1
  270:          DO WHILE( K.LE.N )
  271:             IF( IPIV( K ).GT.0 ) THEN
  272: *              1 x 1 diagonal NNB
  273:                WORK( K, INVD ) = ONE /  A( K, K )
  274:                WORK( K, INVD+1 ) = ZERO
  275:             ELSE
  276: *              2 x 2 diagonal NNB
  277:                T = WORK( K+1, 1 )
  278:                AK = A( K, K ) / T
  279:                AKP1 = A( K+1, K+1 ) / T
  280:                AKKP1 = WORK( K+1, 1 )  / T
  281:                D = T*( AK*AKP1-ONE )
  282:                WORK( K, INVD ) = AKP1 / D
  283:                WORK( K+1, INVD+1 ) = AK / D
  284:                WORK( K, INVD+1 ) = -AKKP1 / D
  285:                WORK( K+1, INVD ) = WORK( K, INVD+1 )
  286:                K = K + 1
  287:             END IF
  288:             K = K + 1
  289:          END DO
  290: *
  291: *        inv(U**T) = (inv(U))**T
  292: *
  293: *        inv(U**T) * inv(D) * inv(U)
  294: *
  295:          CUT = N
  296:          DO WHILE( CUT.GT.0 )
  297:             NNB = NB
  298:             IF( CUT.LE.NNB ) THEN
  299:                NNB = CUT
  300:             ELSE
  301:                ICOUNT = 0
  302: *              count negative elements,
  303:                DO I = CUT+1-NNB, CUT
  304:                   IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  305:                END DO
  306: *              need a even number for a clear cut
  307:                IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  308:             END IF
  309: 
  310:             CUT = CUT - NNB
  311: *
  312: *           U01 Block
  313: *
  314:             DO I = 1, CUT
  315:                DO J = 1, NNB
  316:                   WORK( I, J ) = A( I, CUT+J )
  317:                END DO
  318:             END DO
  319: *
  320: *           U11 Block
  321: *
  322:             DO I = 1, NNB
  323:                WORK( U11+I, I ) = ONE
  324:                DO J = 1, I-1
  325:                   WORK( U11+I, J ) = ZERO
  326:                 END DO
  327:                 DO J = I+1, NNB
  328:                    WORK( U11+I, J ) = A( CUT+I, CUT+J )
  329:                 END DO
  330:             END DO
  331: *
  332: *           invD * U01
  333: *
  334:             I = 1
  335:             DO WHILE( I.LE.CUT )
  336:                IF( IPIV( I ).GT.0 ) THEN
  337:                   DO J = 1, NNB
  338:                      WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
  339:                   END DO
  340:                ELSE
  341:                   DO J = 1, NNB
  342:                      U01_I_J = WORK( I, J )
  343:                      U01_IP1_J = WORK( I+1, J )
  344:                      WORK( I, J ) = WORK( I, INVD ) * U01_I_J
  345:      $                            + WORK( I, INVD+1 ) * U01_IP1_J
  346:                      WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
  347:      $                              + WORK( I+1, INVD+1 ) * U01_IP1_J
  348:                   END DO
  349:                   I = I + 1
  350:                END IF
  351:                I = I + 1
  352:             END DO
  353: *
  354: *           invD1 * U11
  355: *
  356:             I = 1
  357:             DO WHILE ( I.LE.NNB )
  358:                IF( IPIV( CUT+I ).GT.0 ) THEN
  359:                   DO J = I, NNB
  360:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  361:                   END DO
  362:                ELSE
  363:                   DO J = I, NNB
  364:                      U11_I_J = WORK(U11+I,J)
  365:                      U11_IP1_J = WORK(U11+I+1,J)
  366:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  367:      $                            + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
  368:                      WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
  369:      $                               + WORK(CUT+I+1,INVD+1) * U11_IP1_J
  370:                   END DO
  371:                   I = I + 1
  372:                END IF
  373:                I = I + 1
  374:             END DO
  375: *
  376: *           U11**T * invD1 * U11 -> U11
  377: *
  378:             CALL DTRMM( 'L', 'U', 'T', 'U', NNB, NNB,
  379:      $                 ONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  380:      $                 N+NB+1 )
  381: *
  382:             DO I = 1, NNB
  383:                DO J = I, NNB
  384:                   A( CUT+I, CUT+J ) = WORK( U11+I, J )
  385:                END DO
  386:             END DO
  387: *
  388: *           U01**T * invD * U01 -> A( CUT+I, CUT+J )
  389: *
  390:             CALL DGEMM( 'T', 'N', NNB, NNB, CUT, ONE, A( 1, CUT+1 ),
  391:      $                  LDA, WORK, N+NB+1, ZERO, WORK(U11+1,1), N+NB+1 )
  392: 
  393: *
  394: *           U11 =  U11**T * invD1 * U11 + U01**T * invD * U01
  395: *
  396:             DO I = 1, NNB
  397:                DO J = I, NNB
  398:                   A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
  399:                END DO
  400:             END DO
  401: *
  402: *           U01 =  U00**T * invD0 * U01
  403: *
  404:             CALL DTRMM( 'L', UPLO, 'T', 'U', CUT, NNB,
  405:      $                  ONE, A, LDA, WORK, N+NB+1 )
  406: 
  407: *
  408: *           Update U01
  409: *
  410:             DO I = 1, CUT
  411:                DO J = 1, NNB
  412:                   A( I, CUT+J ) = WORK( I, J )
  413:                END DO
  414:             END DO
  415: *
  416: *           Next Block
  417: *
  418:          END DO
  419: *
  420: *        Apply PERMUTATIONS P and P**T:
  421: *        P * inv(U**T) * inv(D) * inv(U) * P**T.
  422: *        Interchange rows and columns I and IPIV(I) in reverse order
  423: *        from the formation order of IPIV vector for Upper case.
  424: *
  425: *        ( We can use a loop over IPIV with increment 1,
  426: *        since the ABS value of IPIV(I) represents the row (column)
  427: *        index of the interchange with row (column) i in both 1x1
  428: *        and 2x2 pivot cases, i.e. we don't need separate code branches
  429: *        for 1x1 and 2x2 pivot cases )
  430: *
  431:          DO I = 1, N
  432:              IP = ABS( IPIV( I ) )
  433:              IF( IP.NE.I ) THEN
  434:                 IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
  435:                 IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
  436:              END IF
  437:          END DO
  438: *
  439:       ELSE
  440: *
  441: *        Begin Lower
  442: *
  443: *        inv A = P * inv(L**T) * inv(D) * inv(L) * P**T.
  444: *
  445:          CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO )
  446: *
  447: *        inv(D) and inv(D) * inv(L)
  448: *
  449:          K = N
  450:          DO WHILE ( K .GE. 1 )
  451:             IF( IPIV( K ).GT.0 ) THEN
  452: *              1 x 1 diagonal NNB
  453:                WORK( K, INVD ) = ONE /  A( K, K )
  454:                WORK( K, INVD+1 ) = ZERO
  455:             ELSE
  456: *              2 x 2 diagonal NNB
  457:                T = WORK( K-1, 1 )
  458:                AK = A( K-1, K-1 ) / T
  459:                AKP1 = A( K, K ) / T
  460:                AKKP1 = WORK( K-1, 1 ) / T
  461:                D = T*( AK*AKP1-ONE )
  462:                WORK( K-1, INVD ) = AKP1 / D
  463:                WORK( K, INVD ) = AK / D
  464:                WORK( K, INVD+1 ) = -AKKP1 / D
  465:                WORK( K-1, INVD+1 ) = WORK( K, INVD+1 )
  466:                K = K - 1
  467:             END IF
  468:             K = K - 1
  469:          END DO
  470: *
  471: *        inv(L**T) = (inv(L))**T
  472: *
  473: *        inv(L**T) * inv(D) * inv(L)
  474: *
  475:          CUT = 0
  476:          DO WHILE( CUT.LT.N )
  477:             NNB = NB
  478:             IF( (CUT + NNB).GT.N ) THEN
  479:                NNB = N - CUT
  480:             ELSE
  481:                ICOUNT = 0
  482: *              count negative elements,
  483:                DO I = CUT + 1, CUT+NNB
  484:                   IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  485:                END DO
  486: *              need a even number for a clear cut
  487:                IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  488:             END IF
  489: *
  490: *           L21 Block
  491: *
  492:             DO I = 1, N-CUT-NNB
  493:                DO J = 1, NNB
  494:                  WORK( I, J ) = A( CUT+NNB+I, CUT+J )
  495:                END DO
  496:             END DO
  497: *
  498: *           L11 Block
  499: *
  500:             DO I = 1, NNB
  501:                WORK( U11+I, I) = ONE
  502:                DO J = I+1, NNB
  503:                   WORK( U11+I, J ) = ZERO
  504:                END DO
  505:                DO J = 1, I-1
  506:                   WORK( U11+I, J ) = A( CUT+I, CUT+J )
  507:                END DO
  508:             END DO
  509: *
  510: *           invD*L21
  511: *
  512:             I = N-CUT-NNB
  513:             DO WHILE( I.GE.1 )
  514:                IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
  515:                   DO J = 1, NNB
  516:                      WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
  517:                   END DO
  518:                ELSE
  519:                   DO J = 1, NNB
  520:                      U01_I_J = WORK(I,J)
  521:                      U01_IP1_J = WORK(I-1,J)
  522:                      WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
  523:      $                        WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
  524:                      WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
  525:      $                        WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
  526:                   END DO
  527:                   I = I - 1
  528:                END IF
  529:                I = I - 1
  530:             END DO
  531: *
  532: *           invD1*L11
  533: *
  534:             I = NNB
  535:             DO WHILE( I.GE.1 )
  536:                IF( IPIV( CUT+I ).GT.0 ) THEN
  537:                   DO J = 1, NNB
  538:                      WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
  539:                   END DO
  540: 
  541:                ELSE
  542:                   DO J = 1, NNB
  543:                      U11_I_J = WORK( U11+I, J )
  544:                      U11_IP1_J = WORK( U11+I-1, J )
  545:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  546:      $                                + WORK(CUT+I,INVD+1) * U11_IP1_J
  547:                      WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
  548:      $                                  + WORK(CUT+I-1,INVD) * U11_IP1_J
  549:                   END DO
  550:                   I = I - 1
  551:                END IF
  552:                I = I - 1
  553:             END DO
  554: *
  555: *           L11**T * invD1 * L11 -> L11
  556: *
  557:             CALL DTRMM( 'L', UPLO, 'T', 'U', NNB, NNB, ONE,
  558:      $                   A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  559:      $                   N+NB+1 )
  560: 
  561: *
  562:             DO I = 1, NNB
  563:                DO J = 1, I
  564:                   A( CUT+I, CUT+J ) = WORK( U11+I, J )
  565:                END DO
  566:             END DO
  567: *
  568:             IF( (CUT+NNB).LT.N ) THEN
  569: *
  570: *              L21**T * invD2*L21 -> A( CUT+I, CUT+J )
  571: *
  572:                CALL DGEMM( 'T', 'N', NNB, NNB, N-NNB-CUT, ONE,
  573:      $                     A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
  574:      $                     ZERO, WORK( U11+1, 1 ), N+NB+1 )
  575: 
  576: *
  577: *              L11 =  L11**T * invD1 * L11 + U01**T * invD * U01
  578: *
  579:                DO I = 1, NNB
  580:                   DO J = 1, I
  581:                      A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
  582:                   END DO
  583:                END DO
  584: *
  585: *              L01 =  L22**T * invD2 * L21
  586: *
  587:                CALL DTRMM( 'L', UPLO, 'T', 'U', N-NNB-CUT, NNB, ONE,
  588:      $                     A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
  589:      $                     N+NB+1 )
  590: *
  591: *              Update L21
  592: *
  593:                DO I = 1, N-CUT-NNB
  594:                   DO J = 1, NNB
  595:                      A( CUT+NNB+I, CUT+J ) = WORK( I, J )
  596:                   END DO
  597:                END DO
  598: *
  599:             ELSE
  600: *
  601: *              L11 =  L11**T * invD1 * L11
  602: *
  603:                DO I = 1, NNB
  604:                   DO J = 1, I
  605:                      A( CUT+I, CUT+J ) = WORK( U11+I, J )
  606:                   END DO
  607:                END DO
  608:             END IF
  609: *
  610: *           Next Block
  611: *
  612:             CUT = CUT + NNB
  613: *
  614:          END DO
  615: *
  616: *        Apply PERMUTATIONS P and P**T:
  617: *        P * inv(L**T) * inv(D) * inv(L) * P**T.
  618: *        Interchange rows and columns I and IPIV(I) in reverse order
  619: *        from the formation order of IPIV vector for Lower case.
  620: *
  621: *        ( We can use a loop over IPIV with increment -1,
  622: *        since the ABS value of IPIV(I) represents the row (column)
  623: *        index of the interchange with row (column) i in both 1x1
  624: *        and 2x2 pivot cases, i.e. we don't need separate code branches
  625: *        for 1x1 and 2x2 pivot cases )
  626: *
  627:          DO I = N, 1, -1
  628:              IP = ABS( IPIV( I ) )
  629:              IF( IP.NE.I ) THEN
  630:                 IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
  631:                 IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
  632:              END IF
  633:          END DO
  634: *
  635:       END IF
  636: *
  637:       RETURN
  638: *
  639: *     End of DSYTRI_3X
  640: *
  641:       END
  642: 

CVSweb interface <joel.bertrand@systella.fr>