File:  [local] / rpl / lapack / lapack / dsytri_3x.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Tue May 29 06:55:21 2018 UTC (6 years ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DSYTRI_3X
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRI_3X + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri_3x.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri_3x.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri_3x.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ),  E( * ), WORK( N+NB+1, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *> DSYTRI_3X computes the inverse of a real symmetric indefinite
   38: *> matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK:
   39: *>
   40: *>     A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
   41: *>
   42: *> where U (or L) is unit upper (or lower) triangular matrix,
   43: *> U**T (or L**T) is the transpose of U (or L), P is a permutation
   44: *> matrix, P**T is the transpose of P, and D is symmetric and block
   45: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the details of the factorization are
   57: *>          stored as an upper or lower triangular matrix.
   58: *>          = 'U':  Upper triangle of A is stored;
   59: *>          = 'L':  Lower triangle of A is stored.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   71: *>          On entry, diagonal of the block diagonal matrix D and
   72: *>          factors U or L as computed by DSYTRF_RK and DSYTRF_BK:
   73: *>            a) ONLY diagonal elements of the symmetric block diagonal
   74: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
   75: *>               (superdiagonal (or subdiagonal) elements of D
   76: *>                should be provided on entry in array E), and
   77: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
   78: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
   79: *>
   80: *>          On exit, if INFO = 0, the symmetric inverse of the original
   81: *>          matrix.
   82: *>             If UPLO = 'U': the upper triangular part of the inverse
   83: *>             is formed and the part of A below the diagonal is not
   84: *>             referenced;
   85: *>             If UPLO = 'L': the lower triangular part of the inverse
   86: *>             is formed and the part of A above the diagonal is not
   87: *>             referenced.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDA
   91: *> \verbatim
   92: *>          LDA is INTEGER
   93: *>          The leading dimension of the array A.  LDA >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[in] E
   97: *> \verbatim
   98: *>          E is DOUBLE PRECISION array, dimension (N)
   99: *>          On entry, contains the superdiagonal (or subdiagonal)
  100: *>          elements of the symmetric block diagonal matrix D
  101: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  102: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
  103: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
  104: *>
  105: *>          NOTE: For 1-by-1 diagonal block D(k), where
  106: *>          1 <= k <= N, the element E(k) is not referenced in both
  107: *>          UPLO = 'U' or UPLO = 'L' cases.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] IPIV
  111: *> \verbatim
  112: *>          IPIV is INTEGER array, dimension (N)
  113: *>          Details of the interchanges and the block structure of D
  114: *>          as determined by DSYTRF_RK or DSYTRF_BK.
  115: *> \endverbatim
  116: *>
  117: *> \param[out] WORK
  118: *> \verbatim
  119: *>          WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3).
  120: *> \endverbatim
  121: *>
  122: *> \param[in] NB
  123: *> \verbatim
  124: *>          NB is INTEGER
  125: *>          Block size.
  126: *> \endverbatim
  127: *>
  128: *> \param[out] INFO
  129: *> \verbatim
  130: *>          INFO is INTEGER
  131: *>          = 0: successful exit
  132: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  133: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  134: *>               inverse could not be computed.
  135: *> \endverbatim
  136: *
  137: *  Authors:
  138: *  ========
  139: *
  140: *> \author Univ. of Tennessee
  141: *> \author Univ. of California Berkeley
  142: *> \author Univ. of Colorado Denver
  143: *> \author NAG Ltd.
  144: *
  145: *> \date June 2017
  146: *
  147: *> \ingroup doubleSYcomputational
  148: *
  149: *> \par Contributors:
  150: *  ==================
  151: *> \verbatim
  152: *>
  153: *>  June 2017,  Igor Kozachenko,
  154: *>                  Computer Science Division,
  155: *>                  University of California, Berkeley
  156: *>
  157: *> \endverbatim
  158: *
  159: *  =====================================================================
  160:       SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  161: *
  162: *  -- LAPACK computational routine (version 3.7.1) --
  163: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  164: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165: *     June 2017
  166: *
  167: *     .. Scalar Arguments ..
  168:       CHARACTER          UPLO
  169:       INTEGER            INFO, LDA, N, NB
  170: *     ..
  171: *     .. Array Arguments ..
  172:       INTEGER            IPIV( * )
  173:       DOUBLE PRECISION   A( LDA, * ), E( * ), WORK( N+NB+1, * )
  174: *     ..
  175: *
  176: *  =====================================================================
  177: *
  178: *     .. Parameters ..
  179:       DOUBLE PRECISION   ONE, ZERO
  180:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  181: *     ..
  182: *     .. Local Scalars ..
  183:       LOGICAL            UPPER
  184:       INTEGER            CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
  185:       DOUBLE PRECISION   AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J,
  186:      $                   U11_I_J, U11_IP1_J
  187: *     ..
  188: *     .. External Functions ..
  189:       LOGICAL            LSAME
  190:       EXTERNAL           LSAME
  191: *     ..
  192: *     .. External Subroutines ..
  193:       EXTERNAL           DGEMM, DSYSWAPR, DTRTRI, DTRMM, XERBLA
  194: *     ..
  195: *     .. Intrinsic Functions ..
  196:       INTRINSIC          ABS, MAX, MOD
  197: *     ..
  198: *     .. Executable Statements ..
  199: *
  200: *     Test the input parameters.
  201: *
  202:       INFO = 0
  203:       UPPER = LSAME( UPLO, 'U' )
  204:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  205:          INFO = -1
  206:       ELSE IF( N.LT.0 ) THEN
  207:          INFO = -2
  208:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  209:          INFO = -4
  210:       END IF
  211: *
  212: *     Quick return if possible
  213: *
  214:       IF( INFO.NE.0 ) THEN
  215:          CALL XERBLA( 'DSYTRI_3X', -INFO )
  216:          RETURN
  217:       END IF
  218:       IF( N.EQ.0 )
  219:      $   RETURN
  220: *
  221: *     Workspace got Non-diag elements of D
  222: *
  223:       DO K = 1, N
  224:          WORK( K, 1 ) = E( K )
  225:       END DO
  226: *
  227: *     Check that the diagonal matrix D is nonsingular.
  228: *
  229:       IF( UPPER ) THEN
  230: *
  231: *        Upper triangular storage: examine D from bottom to top
  232: *
  233:          DO INFO = N, 1, -1
  234:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  235:      $         RETURN
  236:          END DO
  237:       ELSE
  238: *
  239: *        Lower triangular storage: examine D from top to bottom.
  240: *
  241:          DO INFO = 1, N
  242:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  243:      $         RETURN
  244:          END DO
  245:       END IF
  246: *
  247:       INFO = 0
  248: *
  249: *     Splitting Workspace
  250: *     U01 is a block ( N, NB+1 )
  251: *     The first element of U01 is in WORK( 1, 1 )
  252: *     U11 is a block ( NB+1, NB+1 )
  253: *     The first element of U11 is in WORK( N+1, 1 )
  254: *
  255:       U11 = N
  256: *
  257: *     INVD is a block ( N, 2 )
  258: *     The first element of INVD is in WORK( 1, INVD )
  259: *
  260:       INVD = NB + 2
  261: 
  262:       IF( UPPER ) THEN
  263: *
  264: *        Begin Upper
  265: *
  266: *        invA = P * inv(U**T) * inv(D) * inv(U) * P**T.
  267: *
  268:          CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO )
  269: *
  270: *        inv(D) and inv(D) * inv(U)
  271: *
  272:          K = 1
  273:          DO WHILE( K.LE.N )
  274:             IF( IPIV( K ).GT.0 ) THEN
  275: *              1 x 1 diagonal NNB
  276:                WORK( K, INVD ) = ONE /  A( K, K )
  277:                WORK( K, INVD+1 ) = ZERO
  278:             ELSE
  279: *              2 x 2 diagonal NNB
  280:                T = WORK( K+1, 1 )
  281:                AK = A( K, K ) / T
  282:                AKP1 = A( K+1, K+1 ) / T
  283:                AKKP1 = WORK( K+1, 1 )  / T
  284:                D = T*( AK*AKP1-ONE )
  285:                WORK( K, INVD ) = AKP1 / D
  286:                WORK( K+1, INVD+1 ) = AK / D
  287:                WORK( K, INVD+1 ) = -AKKP1 / D
  288:                WORK( K+1, INVD ) = WORK( K, INVD+1 )
  289:                K = K + 1
  290:             END IF
  291:             K = K + 1
  292:          END DO
  293: *
  294: *        inv(U**T) = (inv(U))**T
  295: *
  296: *        inv(U**T) * inv(D) * inv(U)
  297: *
  298:          CUT = N
  299:          DO WHILE( CUT.GT.0 )
  300:             NNB = NB
  301:             IF( CUT.LE.NNB ) THEN
  302:                NNB = CUT
  303:             ELSE
  304:                ICOUNT = 0
  305: *              count negative elements,
  306:                DO I = CUT+1-NNB, CUT
  307:                   IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  308:                END DO
  309: *              need a even number for a clear cut
  310:                IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  311:             END IF
  312: 
  313:             CUT = CUT - NNB
  314: *
  315: *           U01 Block
  316: *
  317:             DO I = 1, CUT
  318:                DO J = 1, NNB
  319:                   WORK( I, J ) = A( I, CUT+J )
  320:                END DO
  321:             END DO
  322: *
  323: *           U11 Block
  324: *
  325:             DO I = 1, NNB
  326:                WORK( U11+I, I ) = ONE
  327:                DO J = 1, I-1
  328:                   WORK( U11+I, J ) = ZERO
  329:                 END DO
  330:                 DO J = I+1, NNB
  331:                    WORK( U11+I, J ) = A( CUT+I, CUT+J )
  332:                 END DO
  333:             END DO
  334: *
  335: *           invD * U01
  336: *
  337:             I = 1
  338:             DO WHILE( I.LE.CUT )
  339:                IF( IPIV( I ).GT.0 ) THEN
  340:                   DO J = 1, NNB
  341:                      WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
  342:                   END DO
  343:                ELSE
  344:                   DO J = 1, NNB
  345:                      U01_I_J = WORK( I, J )
  346:                      U01_IP1_J = WORK( I+1, J )
  347:                      WORK( I, J ) = WORK( I, INVD ) * U01_I_J
  348:      $                            + WORK( I, INVD+1 ) * U01_IP1_J
  349:                      WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
  350:      $                              + WORK( I+1, INVD+1 ) * U01_IP1_J
  351:                   END DO
  352:                   I = I + 1
  353:                END IF
  354:                I = I + 1
  355:             END DO
  356: *
  357: *           invD1 * U11
  358: *
  359:             I = 1
  360:             DO WHILE ( I.LE.NNB )
  361:                IF( IPIV( CUT+I ).GT.0 ) THEN
  362:                   DO J = I, NNB
  363:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  364:                   END DO
  365:                ELSE
  366:                   DO J = I, NNB
  367:                      U11_I_J = WORK(U11+I,J)
  368:                      U11_IP1_J = WORK(U11+I+1,J)
  369:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  370:      $                            + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
  371:                      WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
  372:      $                               + WORK(CUT+I+1,INVD+1) * U11_IP1_J
  373:                   END DO
  374:                   I = I + 1
  375:                END IF
  376:                I = I + 1
  377:             END DO
  378: *
  379: *           U11**T * invD1 * U11 -> U11
  380: *
  381:             CALL DTRMM( 'L', 'U', 'T', 'U', NNB, NNB,
  382:      $                 ONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  383:      $                 N+NB+1 )
  384: *
  385:             DO I = 1, NNB
  386:                DO J = I, NNB
  387:                   A( CUT+I, CUT+J ) = WORK( U11+I, J )
  388:                END DO
  389:             END DO
  390: *
  391: *           U01**T * invD * U01 -> A( CUT+I, CUT+J )
  392: *
  393:             CALL DGEMM( 'T', 'N', NNB, NNB, CUT, ONE, A( 1, CUT+1 ),
  394:      $                  LDA, WORK, N+NB+1, ZERO, WORK(U11+1,1), N+NB+1 )
  395: 
  396: *
  397: *           U11 =  U11**T * invD1 * U11 + U01**T * invD * U01
  398: *
  399:             DO I = 1, NNB
  400:                DO J = I, NNB
  401:                   A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
  402:                END DO
  403:             END DO
  404: *
  405: *           U01 =  U00**T * invD0 * U01
  406: *
  407:             CALL DTRMM( 'L', UPLO, 'T', 'U', CUT, NNB,
  408:      $                  ONE, A, LDA, WORK, N+NB+1 )
  409: 
  410: *
  411: *           Update U01
  412: *
  413:             DO I = 1, CUT
  414:                DO J = 1, NNB
  415:                   A( I, CUT+J ) = WORK( I, J )
  416:                END DO
  417:             END DO
  418: *
  419: *           Next Block
  420: *
  421:          END DO
  422: *
  423: *        Apply PERMUTATIONS P and P**T:
  424: *        P * inv(U**T) * inv(D) * inv(U) * P**T.
  425: *        Interchange rows and columns I and IPIV(I) in reverse order
  426: *        from the formation order of IPIV vector for Upper case.
  427: *
  428: *        ( We can use a loop over IPIV with increment 1,
  429: *        since the ABS value of IPIV(I) represents the row (column)
  430: *        index of the interchange with row (column) i in both 1x1
  431: *        and 2x2 pivot cases, i.e. we don't need separate code branches
  432: *        for 1x1 and 2x2 pivot cases )
  433: *
  434:          DO I = 1, N
  435:              IP = ABS( IPIV( I ) )
  436:              IF( IP.NE.I ) THEN
  437:                 IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
  438:                 IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
  439:              END IF
  440:          END DO
  441: *
  442:       ELSE
  443: *
  444: *        Begin Lower
  445: *
  446: *        inv A = P * inv(L**T) * inv(D) * inv(L) * P**T.
  447: *
  448:          CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO )
  449: *
  450: *        inv(D) and inv(D) * inv(L)
  451: *
  452:          K = N
  453:          DO WHILE ( K .GE. 1 )
  454:             IF( IPIV( K ).GT.0 ) THEN
  455: *              1 x 1 diagonal NNB
  456:                WORK( K, INVD ) = ONE /  A( K, K )
  457:                WORK( K, INVD+1 ) = ZERO
  458:             ELSE
  459: *              2 x 2 diagonal NNB
  460:                T = WORK( K-1, 1 )
  461:                AK = A( K-1, K-1 ) / T
  462:                AKP1 = A( K, K ) / T
  463:                AKKP1 = WORK( K-1, 1 ) / T
  464:                D = T*( AK*AKP1-ONE )
  465:                WORK( K-1, INVD ) = AKP1 / D
  466:                WORK( K, INVD ) = AK / D
  467:                WORK( K, INVD+1 ) = -AKKP1 / D
  468:                WORK( K-1, INVD+1 ) = WORK( K, INVD+1 )
  469:                K = K - 1
  470:             END IF
  471:             K = K - 1
  472:          END DO
  473: *
  474: *        inv(L**T) = (inv(L))**T
  475: *
  476: *        inv(L**T) * inv(D) * inv(L)
  477: *
  478:          CUT = 0
  479:          DO WHILE( CUT.LT.N )
  480:             NNB = NB
  481:             IF( (CUT + NNB).GT.N ) THEN
  482:                NNB = N - CUT
  483:             ELSE
  484:                ICOUNT = 0
  485: *              count negative elements,
  486:                DO I = CUT + 1, CUT+NNB
  487:                   IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  488:                END DO
  489: *              need a even number for a clear cut
  490:                IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  491:             END IF
  492: *
  493: *           L21 Block
  494: *
  495:             DO I = 1, N-CUT-NNB
  496:                DO J = 1, NNB
  497:                  WORK( I, J ) = A( CUT+NNB+I, CUT+J )
  498:                END DO
  499:             END DO
  500: *
  501: *           L11 Block
  502: *
  503:             DO I = 1, NNB
  504:                WORK( U11+I, I) = ONE
  505:                DO J = I+1, NNB
  506:                   WORK( U11+I, J ) = ZERO
  507:                END DO
  508:                DO J = 1, I-1
  509:                   WORK( U11+I, J ) = A( CUT+I, CUT+J )
  510:                END DO
  511:             END DO
  512: *
  513: *           invD*L21
  514: *
  515:             I = N-CUT-NNB
  516:             DO WHILE( I.GE.1 )
  517:                IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
  518:                   DO J = 1, NNB
  519:                      WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
  520:                   END DO
  521:                ELSE
  522:                   DO J = 1, NNB
  523:                      U01_I_J = WORK(I,J)
  524:                      U01_IP1_J = WORK(I-1,J)
  525:                      WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
  526:      $                        WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
  527:                      WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
  528:      $                        WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
  529:                   END DO
  530:                   I = I - 1
  531:                END IF
  532:                I = I - 1
  533:             END DO
  534: *
  535: *           invD1*L11
  536: *
  537:             I = NNB
  538:             DO WHILE( I.GE.1 )
  539:                IF( IPIV( CUT+I ).GT.0 ) THEN
  540:                   DO J = 1, NNB
  541:                      WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
  542:                   END DO
  543: 
  544:                ELSE
  545:                   DO J = 1, NNB
  546:                      U11_I_J = WORK( U11+I, J )
  547:                      U11_IP1_J = WORK( U11+I-1, J )
  548:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  549:      $                                + WORK(CUT+I,INVD+1) * U11_IP1_J
  550:                      WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
  551:      $                                  + WORK(CUT+I-1,INVD) * U11_IP1_J
  552:                   END DO
  553:                   I = I - 1
  554:                END IF
  555:                I = I - 1
  556:             END DO
  557: *
  558: *           L11**T * invD1 * L11 -> L11
  559: *
  560:             CALL DTRMM( 'L', UPLO, 'T', 'U', NNB, NNB, ONE,
  561:      $                   A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  562:      $                   N+NB+1 )
  563: 
  564: *
  565:             DO I = 1, NNB
  566:                DO J = 1, I
  567:                   A( CUT+I, CUT+J ) = WORK( U11+I, J )
  568:                END DO
  569:             END DO
  570: *
  571:             IF( (CUT+NNB).LT.N ) THEN
  572: *
  573: *              L21**T * invD2*L21 -> A( CUT+I, CUT+J )
  574: *
  575:                CALL DGEMM( 'T', 'N', NNB, NNB, N-NNB-CUT, ONE,
  576:      $                     A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
  577:      $                     ZERO, WORK( U11+1, 1 ), N+NB+1 )
  578: 
  579: *
  580: *              L11 =  L11**T * invD1 * L11 + U01**T * invD * U01
  581: *
  582:                DO I = 1, NNB
  583:                   DO J = 1, I
  584:                      A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
  585:                   END DO
  586:                END DO
  587: *
  588: *              L01 =  L22**T * invD2 * L21
  589: *
  590:                CALL DTRMM( 'L', UPLO, 'T', 'U', N-NNB-CUT, NNB, ONE,
  591:      $                     A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
  592:      $                     N+NB+1 )
  593: *
  594: *              Update L21
  595: *
  596:                DO I = 1, N-CUT-NNB
  597:                   DO J = 1, NNB
  598:                      A( CUT+NNB+I, CUT+J ) = WORK( I, J )
  599:                   END DO
  600:                END DO
  601: *
  602:             ELSE
  603: *
  604: *              L11 =  L11**T * invD1 * L11
  605: *
  606:                DO I = 1, NNB
  607:                   DO J = 1, I
  608:                      A( CUT+I, CUT+J ) = WORK( U11+I, J )
  609:                   END DO
  610:                END DO
  611:             END IF
  612: *
  613: *           Next Block
  614: *
  615:             CUT = CUT + NNB
  616: *
  617:          END DO
  618: *
  619: *        Apply PERMUTATIONS P and P**T:
  620: *        P * inv(L**T) * inv(D) * inv(L) * P**T.
  621: *        Interchange rows and columns I and IPIV(I) in reverse order
  622: *        from the formation order of IPIV vector for Lower case.
  623: *
  624: *        ( We can use a loop over IPIV with increment -1,
  625: *        since the ABS value of IPIV(I) represents the row (column)
  626: *        index of the interchange with row (column) i in both 1x1
  627: *        and 2x2 pivot cases, i.e. we don't need separate code branches
  628: *        for 1x1 and 2x2 pivot cases )
  629: *
  630:          DO I = N, 1, -1
  631:              IP = ABS( IPIV( I ) )
  632:              IF( IP.NE.I ) THEN
  633:                 IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
  634:                 IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
  635:              END IF
  636:          END DO
  637: *
  638:       END IF
  639: *
  640:       RETURN
  641: *
  642: *     End of DSYTRI_3X
  643: *
  644:       END
  645: 

CVSweb interface <joel.bertrand@systella.fr>