--- rpl/lapack/lapack/dsytri2.f 2011/07/22 07:38:12 1.3 +++ rpl/lapack/lapack/dsytri2.f 2011/11/21 20:43:05 1.4 @@ -1,13 +1,137 @@ +*> \brief \b DSYTRI2 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DSYTRI2 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER UPLO +* INTEGER INFO, LDA, LWORK, N +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ) +* DOUBLE PRECISION A( LDA, * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DSYTRI2 computes the inverse of a DOUBLE PRECISION hermitian indefinite matrix +*> A using the factorization A = U*D*U**T or A = L*D*L**T computed by +*> DSYTRF. DSYTRI2 sets the LEADING DIMENSION of the workspace +*> before calling DSYTRI2X that actually computes the inverse. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> Specifies whether the details of the factorization are stored +*> as an upper or lower triangular matrix. +*> = 'U': Upper triangular, form is A = U*D*U**T; +*> = 'L': Lower triangular, form is A = L*D*L**T. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the NB diagonal matrix D and the multipliers +*> used to obtain the factor U or L as computed by DSYTRF. +*> +*> On exit, if INFO = 0, the (symmetric) inverse of the original +*> matrix. If UPLO = 'U', the upper triangular part of the +*> inverse is formed and the part of A below the diagonal is not +*> referenced; if UPLO = 'L' the lower triangular part of the +*> inverse is formed and the part of A above the diagonal is +*> not referenced. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (N) +*> Details of the interchanges and the NB structure of D +*> as determined by DSYTRF. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3) +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> WORK is size >= (N+NB+1)*(NB+3) +*> If LDWORK = -1, then a workspace query is assumed; the routine +*> calculates: +*> - the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, +*> - and no error message related to LDWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its +*> inverse could not be computed. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleSYcomputational +* +* ===================================================================== SUBROUTINE DSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * -* -- LAPACK routine (version 3.3.1) -- +* -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -- April 2011 -- -* -* -- Written by Julie Langou of the Univ. of TN -- +* November 2011 * -* @generated d * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LWORK, N @@ -17,61 +141,6 @@ DOUBLE PRECISION A( LDA, * ), WORK( * ) * .. * -* Purpose -* ======= -* -* DSYTRI2 computes the inverse of a DOUBLE PRECISION hermitian indefinite matrix -* A using the factorization A = U*D*U**T or A = L*D*L**T computed by -* DSYTRF. DSYTRI2 sets the LEADING DIMENSION of the workspace -* before calling DSYTRI2X that actually computes the inverse. -* -* Arguments -* ========= -* -* UPLO (input) CHARACTER*1 -* Specifies whether the details of the factorization are stored -* as an upper or lower triangular matrix. -* = 'U': Upper triangular, form is A = U*D*U**T; -* = 'L': Lower triangular, form is A = L*D*L**T. -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the NB diagonal matrix D and the multipliers -* used to obtain the factor U or L as computed by DSYTRF. -* -* On exit, if INFO = 0, the (symmetric) inverse of the original -* matrix. If UPLO = 'U', the upper triangular part of the -* inverse is formed and the part of A below the diagonal is not -* referenced; if UPLO = 'L' the lower triangular part of the -* inverse is formed and the part of A above the diagonal is -* not referenced. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* IPIV (input) INTEGER array, dimension (N) -* Details of the interchanges and the NB structure of D -* as determined by DSYTRF. -* -* WORK (workspace) DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3) -* -* LWORK (input) INTEGER -* The dimension of the array WORK. -* WORK is size >= (N+NB+1)*(NB+3) -* If LDWORK = -1, then a workspace query is assumed; the routine -* calculates: -* - the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, -* - and no error message related to LDWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its -* inverse could not be computed. -* * ===================================================================== * * .. Local Scalars ..