File:  [local] / rpl / lapack / lapack / dsytri.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:11 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTRI
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRI + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYTRI computes the inverse of a real symmetric indefinite matrix
   39: *> A using the factorization A = U*D*U**T or A = L*D*L**T computed by
   40: *> DSYTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] A
   62: *> \verbatim
   63: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   64: *>          On entry, the block diagonal matrix D and the multipliers
   65: *>          used to obtain the factor U or L as computed by DSYTRF.
   66: *>
   67: *>          On exit, if INFO = 0, the (symmetric) inverse of the original
   68: *>          matrix.  If UPLO = 'U', the upper triangular part of the
   69: *>          inverse is formed and the part of A below the diagonal is not
   70: *>          referenced; if UPLO = 'L' the lower triangular part of the
   71: *>          inverse is formed and the part of A above the diagonal is
   72: *>          not referenced.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by DSYTRF.
   86: *> \endverbatim
   87: *>
   88: *> \param[out] WORK
   89: *> \verbatim
   90: *>          WORK is DOUBLE PRECISION array, dimension (N)
   91: *> \endverbatim
   92: *>
   93: *> \param[out] INFO
   94: *> \verbatim
   95: *>          INFO is INTEGER
   96: *>          = 0: successful exit
   97: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   98: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   99: *>               inverse could not be computed.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee
  106: *> \author Univ. of California Berkeley
  107: *> \author Univ. of Colorado Denver
  108: *> \author NAG Ltd.
  109: *
  110: *> \ingroup doubleSYcomputational
  111: *
  112: *  =====================================================================
  113:       SUBROUTINE DSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
  114: *
  115: *  -- LAPACK computational routine --
  116: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  117: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  118: *
  119: *     .. Scalar Arguments ..
  120:       CHARACTER          UPLO
  121:       INTEGER            INFO, LDA, N
  122: *     ..
  123: *     .. Array Arguments ..
  124:       INTEGER            IPIV( * )
  125:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
  126: *     ..
  127: *
  128: *  =====================================================================
  129: *
  130: *     .. Parameters ..
  131:       DOUBLE PRECISION   ONE, ZERO
  132:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  133: *     ..
  134: *     .. Local Scalars ..
  135:       LOGICAL            UPPER
  136:       INTEGER            K, KP, KSTEP
  137:       DOUBLE PRECISION   AK, AKKP1, AKP1, D, T, TEMP
  138: *     ..
  139: *     .. External Functions ..
  140:       LOGICAL            LSAME
  141:       DOUBLE PRECISION   DDOT
  142:       EXTERNAL           LSAME, DDOT
  143: *     ..
  144: *     .. External Subroutines ..
  145:       EXTERNAL           DCOPY, DSWAP, DSYMV, XERBLA
  146: *     ..
  147: *     .. Intrinsic Functions ..
  148:       INTRINSIC          ABS, MAX
  149: *     ..
  150: *     .. Executable Statements ..
  151: *
  152: *     Test the input parameters.
  153: *
  154:       INFO = 0
  155:       UPPER = LSAME( UPLO, 'U' )
  156:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  157:          INFO = -1
  158:       ELSE IF( N.LT.0 ) THEN
  159:          INFO = -2
  160:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  161:          INFO = -4
  162:       END IF
  163:       IF( INFO.NE.0 ) THEN
  164:          CALL XERBLA( 'DSYTRI', -INFO )
  165:          RETURN
  166:       END IF
  167: *
  168: *     Quick return if possible
  169: *
  170:       IF( N.EQ.0 )
  171:      $   RETURN
  172: *
  173: *     Check that the diagonal matrix D is nonsingular.
  174: *
  175:       IF( UPPER ) THEN
  176: *
  177: *        Upper triangular storage: examine D from bottom to top
  178: *
  179:          DO 10 INFO = N, 1, -1
  180:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  181:      $         RETURN
  182:    10    CONTINUE
  183:       ELSE
  184: *
  185: *        Lower triangular storage: examine D from top to bottom.
  186: *
  187:          DO 20 INFO = 1, N
  188:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  189:      $         RETURN
  190:    20    CONTINUE
  191:       END IF
  192:       INFO = 0
  193: *
  194:       IF( UPPER ) THEN
  195: *
  196: *        Compute inv(A) from the factorization A = U*D*U**T.
  197: *
  198: *        K is the main loop index, increasing from 1 to N in steps of
  199: *        1 or 2, depending on the size of the diagonal blocks.
  200: *
  201:          K = 1
  202:    30    CONTINUE
  203: *
  204: *        If K > N, exit from loop.
  205: *
  206:          IF( K.GT.N )
  207:      $      GO TO 40
  208: *
  209:          IF( IPIV( K ).GT.0 ) THEN
  210: *
  211: *           1 x 1 diagonal block
  212: *
  213: *           Invert the diagonal block.
  214: *
  215:             A( K, K ) = ONE / A( K, K )
  216: *
  217: *           Compute column K of the inverse.
  218: *
  219:             IF( K.GT.1 ) THEN
  220:                CALL DCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  221:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  222:      $                     A( 1, K ), 1 )
  223:                A( K, K ) = A( K, K ) - DDOT( K-1, WORK, 1, A( 1, K ),
  224:      $                     1 )
  225:             END IF
  226:             KSTEP = 1
  227:          ELSE
  228: *
  229: *           2 x 2 diagonal block
  230: *
  231: *           Invert the diagonal block.
  232: *
  233:             T = ABS( A( K, K+1 ) )
  234:             AK = A( K, K ) / T
  235:             AKP1 = A( K+1, K+1 ) / T
  236:             AKKP1 = A( K, K+1 ) / T
  237:             D = T*( AK*AKP1-ONE )
  238:             A( K, K ) = AKP1 / D
  239:             A( K+1, K+1 ) = AK / D
  240:             A( K, K+1 ) = -AKKP1 / D
  241: *
  242: *           Compute columns K and K+1 of the inverse.
  243: *
  244:             IF( K.GT.1 ) THEN
  245:                CALL DCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  246:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  247:      $                     A( 1, K ), 1 )
  248:                A( K, K ) = A( K, K ) - DDOT( K-1, WORK, 1, A( 1, K ),
  249:      $                     1 )
  250:                A( K, K+1 ) = A( K, K+1 ) -
  251:      $                       DDOT( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
  252:                CALL DCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
  253:                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  254:      $                     A( 1, K+1 ), 1 )
  255:                A( K+1, K+1 ) = A( K+1, K+1 ) -
  256:      $                         DDOT( K-1, WORK, 1, A( 1, K+1 ), 1 )
  257:             END IF
  258:             KSTEP = 2
  259:          END IF
  260: *
  261:          KP = ABS( IPIV( K ) )
  262:          IF( KP.NE.K ) THEN
  263: *
  264: *           Interchange rows and columns K and KP in the leading
  265: *           submatrix A(1:k+1,1:k+1)
  266: *
  267:             CALL DSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  268:             CALL DSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  269:             TEMP = A( K, K )
  270:             A( K, K ) = A( KP, KP )
  271:             A( KP, KP ) = TEMP
  272:             IF( KSTEP.EQ.2 ) THEN
  273:                TEMP = A( K, K+1 )
  274:                A( K, K+1 ) = A( KP, K+1 )
  275:                A( KP, K+1 ) = TEMP
  276:             END IF
  277:          END IF
  278: *
  279:          K = K + KSTEP
  280:          GO TO 30
  281:    40    CONTINUE
  282: *
  283:       ELSE
  284: *
  285: *        Compute inv(A) from the factorization A = L*D*L**T.
  286: *
  287: *        K is the main loop index, increasing from 1 to N in steps of
  288: *        1 or 2, depending on the size of the diagonal blocks.
  289: *
  290:          K = N
  291:    50    CONTINUE
  292: *
  293: *        If K < 1, exit from loop.
  294: *
  295:          IF( K.LT.1 )
  296:      $      GO TO 60
  297: *
  298:          IF( IPIV( K ).GT.0 ) THEN
  299: *
  300: *           1 x 1 diagonal block
  301: *
  302: *           Invert the diagonal block.
  303: *
  304:             A( K, K ) = ONE / A( K, K )
  305: *
  306: *           Compute column K of the inverse.
  307: *
  308:             IF( K.LT.N ) THEN
  309:                CALL DCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  310:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  311:      $                     ZERO, A( K+1, K ), 1 )
  312:                A( K, K ) = A( K, K ) - DDOT( N-K, WORK, 1, A( K+1, K ),
  313:      $                     1 )
  314:             END IF
  315:             KSTEP = 1
  316:          ELSE
  317: *
  318: *           2 x 2 diagonal block
  319: *
  320: *           Invert the diagonal block.
  321: *
  322:             T = ABS( A( K, K-1 ) )
  323:             AK = A( K-1, K-1 ) / T
  324:             AKP1 = A( K, K ) / T
  325:             AKKP1 = A( K, K-1 ) / T
  326:             D = T*( AK*AKP1-ONE )
  327:             A( K-1, K-1 ) = AKP1 / D
  328:             A( K, K ) = AK / D
  329:             A( K, K-1 ) = -AKKP1 / D
  330: *
  331: *           Compute columns K-1 and K of the inverse.
  332: *
  333:             IF( K.LT.N ) THEN
  334:                CALL DCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  335:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  336:      $                     ZERO, A( K+1, K ), 1 )
  337:                A( K, K ) = A( K, K ) - DDOT( N-K, WORK, 1, A( K+1, K ),
  338:      $                     1 )
  339:                A( K, K-1 ) = A( K, K-1 ) -
  340:      $                       DDOT( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
  341:      $                       1 )
  342:                CALL DCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
  343:                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  344:      $                     ZERO, A( K+1, K-1 ), 1 )
  345:                A( K-1, K-1 ) = A( K-1, K-1 ) -
  346:      $                         DDOT( N-K, WORK, 1, A( K+1, K-1 ), 1 )
  347:             END IF
  348:             KSTEP = 2
  349:          END IF
  350: *
  351:          KP = ABS( IPIV( K ) )
  352:          IF( KP.NE.K ) THEN
  353: *
  354: *           Interchange rows and columns K and KP in the trailing
  355: *           submatrix A(k-1:n,k-1:n)
  356: *
  357:             IF( KP.LT.N )
  358:      $         CALL DSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  359:             CALL DSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  360:             TEMP = A( K, K )
  361:             A( K, K ) = A( KP, KP )
  362:             A( KP, KP ) = TEMP
  363:             IF( KSTEP.EQ.2 ) THEN
  364:                TEMP = A( K, K-1 )
  365:                A( K, K-1 ) = A( KP, K-1 )
  366:                A( KP, K-1 ) = TEMP
  367:             END IF
  368:          END IF
  369: *
  370:          K = K - KSTEP
  371:          GO TO 50
  372:    60    CONTINUE
  373:       END IF
  374: *
  375:       RETURN
  376: *
  377: *     End of DSYTRI
  378: *
  379:       END

CVSweb interface <joel.bertrand@systella.fr>