Annotation of rpl/lapack/lapack/dsytrf_rook.f, revision 1.2

1.1       bertrand    1: *> \brief \b DSYTRF_ROOK
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSYTRF_ROOK + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrf_rook.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrf_rook.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrf_rook.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LWORK, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DSYTRF_ROOK computes the factorization of a real symmetric matrix A
                     39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
                     40: *> The form of the factorization is
                     41: *>
                     42: *>    A = U*D*U**T  or  A = L*D*L**T
                     43: *>
                     44: *> where U (or L) is a product of permutation and unit upper (lower)
                     45: *> triangular matrices, and D is symmetric and block diagonal with
                     46: *> 1-by-1 and 2-by-2 diagonal blocks.
                     47: *>
                     48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] UPLO
                     55: *> \verbatim
                     56: *>          UPLO is CHARACTER*1
                     57: *>          = 'U':  Upper triangle of A is stored;
                     58: *>          = 'L':  Lower triangle of A is stored.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix A.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in,out] A
                     68: *> \verbatim
                     69: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     70: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     71: *>          N-by-N upper triangular part of A contains the upper
                     72: *>          triangular part of the matrix A, and the strictly lower
                     73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     74: *>          leading N-by-N lower triangular part of A contains the lower
                     75: *>          triangular part of the matrix A, and the strictly upper
                     76: *>          triangular part of A is not referenced.
                     77: *>
                     78: *>          On exit, the block diagonal matrix D and the multipliers used
                     79: *>          to obtain the factor U or L (see below for further details).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDA
                     83: *> \verbatim
                     84: *>          LDA is INTEGER
                     85: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] IPIV
                     89: *> \verbatim
                     90: *>          IPIV is INTEGER array, dimension (N)
                     91: *>          Details of the interchanges and the block structure of D.
                     92: *>
                     93: *>          If UPLO = 'U':
                     94: *>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
                     95: *>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
                     96: *>
                     97: *>               If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
                     98: *>               columns k and -IPIV(k) were interchanged and rows and
                     99: *>               columns k-1 and -IPIV(k-1) were inerchaged,
                    100: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                    101: *>
                    102: *>          If UPLO = 'L':
                    103: *>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
                    104: *>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
                    105: *>
                    106: *>               If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
                    107: *>               columns k and -IPIV(k) were interchanged and rows and
                    108: *>               columns k+1 and -IPIV(k+1) were inerchaged,
                    109: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] WORK
                    113: *> \verbatim
                    114: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
                    115: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LWORK
                    119: *> \verbatim
                    120: *>          LWORK is INTEGER
                    121: *>          The length of WORK.  LWORK >=1.  For best performance
                    122: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
                    123: *>
                    124: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    125: *>          only calculates the optimal size of the WORK array, returns
                    126: *>          this value as the first entry of the WORK array, and no error
                    127: *>          message related to LWORK is issued by XERBLA.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] INFO
                    131: *> \verbatim
                    132: *>          INFO is INTEGER
                    133: *>          = 0:  successful exit
                    134: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    135: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                    136: *>                has been completed, but the block diagonal matrix D is
                    137: *>                exactly singular, and division by zero will occur if it
                    138: *>                is used to solve a system of equations.
                    139: *> \endverbatim
                    140: *
                    141: *  Authors:
                    142: *  ========
                    143: *
                    144: *> \author Univ. of Tennessee 
                    145: *> \author Univ. of California Berkeley 
                    146: *> \author Univ. of Colorado Denver 
                    147: *> \author NAG Ltd. 
                    148: *
                    149: *> \date April 2012
                    150: *
                    151: *> \ingroup doubleSYcomputational
                    152: *
                    153: *> \par Further Details:
                    154: *  =====================
                    155: *>
                    156: *> \verbatim
                    157: *>
                    158: *>  If UPLO = 'U', then A = U*D*U**T, where
                    159: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                    160: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                    161: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    162: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    163: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                    164: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    165: *>
                    166: *>             (   I    v    0   )   k-s
                    167: *>     U(k) =  (   0    I    0   )   s
                    168: *>             (   0    0    I   )   n-k
                    169: *>                k-s   s   n-k
                    170: *>
                    171: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    172: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    173: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    174: *>
                    175: *>  If UPLO = 'L', then A = L*D*L**T, where
                    176: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    177: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    178: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    179: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    180: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    181: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    182: *>
                    183: *>             (   I    0     0   )  k-1
                    184: *>     L(k) =  (   0    I     0   )  s
                    185: *>             (   0    v     I   )  n-k-s+1
                    186: *>                k-1   s  n-k-s+1
                    187: *>
                    188: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    189: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    190: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    191: *> \endverbatim
                    192: *
                    193: *> \par Contributors:
                    194: *  ==================
                    195: *>
                    196: *> \verbatim
                    197: *>
                    198: *>   April 2012, Igor Kozachenko,
                    199: *>                  Computer Science Division,
                    200: *>                  University of California, Berkeley
                    201: *>
                    202: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    203: *>                  School of Mathematics,
                    204: *>                  University of Manchester
                    205: *>
                    206: *> \endverbatim
                    207: *
                    208: *  =====================================================================
                    209:       SUBROUTINE DSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    210: *
                    211: *  -- LAPACK computational routine (version 3.4.1) --
                    212: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    213: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    214: *     April 2012
                    215: *
                    216: *     .. Scalar Arguments ..
                    217:       CHARACTER          UPLO
                    218:       INTEGER            INFO, LDA, LWORK, N
                    219: *     ..
                    220: *     .. Array Arguments ..
                    221:       INTEGER            IPIV( * )
                    222:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                    223: *     ..
                    224: *
                    225: *  =====================================================================
                    226: *
                    227: *     .. Local Scalars ..
                    228:       LOGICAL            LQUERY, UPPER
                    229:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    230: *     ..
                    231: *     .. External Functions ..
                    232:       LOGICAL            LSAME
                    233:       INTEGER            ILAENV
                    234:       EXTERNAL           LSAME, ILAENV
                    235: *     ..
                    236: *     .. External Subroutines ..
                    237:       EXTERNAL           DLASYF_ROOK, DSYTF2_ROOK, XERBLA
                    238: *     ..
                    239: *     .. Intrinsic Functions ..
                    240:       INTRINSIC          MAX
                    241: *     ..
                    242: *     .. Executable Statements ..
                    243: *
                    244: *     Test the input parameters.
                    245: *
                    246:       INFO = 0
                    247:       UPPER = LSAME( UPLO, 'U' )
                    248:       LQUERY = ( LWORK.EQ.-1 )
                    249:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    250:          INFO = -1
                    251:       ELSE IF( N.LT.0 ) THEN
                    252:          INFO = -2
                    253:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    254:          INFO = -4
                    255:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    256:          INFO = -7
                    257:       END IF
                    258: *
                    259:       IF( INFO.EQ.0 ) THEN
                    260: *
                    261: *        Determine the block size
                    262: *
                    263:          NB = ILAENV( 1, 'DSYTRF_ROOK', UPLO, N, -1, -1, -1 )
                    264:          LWKOPT = N*NB
                    265:          WORK( 1 ) = LWKOPT
                    266:       END IF
                    267: *
                    268:       IF( INFO.NE.0 ) THEN
                    269:          CALL XERBLA( 'DSYTRF_ROOK', -INFO )
                    270:          RETURN
                    271:       ELSE IF( LQUERY ) THEN
                    272:          RETURN
                    273:       END IF
                    274: *
                    275:       NBMIN = 2
                    276:       LDWORK = N
                    277:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    278:          IWS = LDWORK*NB
                    279:          IF( LWORK.LT.IWS ) THEN
                    280:             NB = MAX( LWORK / LDWORK, 1 )
                    281:             NBMIN = MAX( 2, ILAENV( 2, 'DSYTRF_ROOK',
                    282:      $                              UPLO, N, -1, -1, -1 ) )
                    283:          END IF
                    284:       ELSE
                    285:          IWS = 1
                    286:       END IF
                    287:       IF( NB.LT.NBMIN )
                    288:      $   NB = N
                    289: *
                    290:       IF( UPPER ) THEN
                    291: *
                    292: *        Factorize A as U*D*U**T using the upper triangle of A
                    293: *
                    294: *        K is the main loop index, decreasing from N to 1 in steps of
                    295: *        KB, where KB is the number of columns factorized by DLASYF_ROOK;
                    296: *        KB is either NB or NB-1, or K for the last block
                    297: *
                    298:          K = N
                    299:    10    CONTINUE
                    300: *
                    301: *        If K < 1, exit from loop
                    302: *
                    303:          IF( K.LT.1 )
                    304:      $      GO TO 40
                    305: *
                    306:          IF( K.GT.NB ) THEN
                    307: *
                    308: *           Factorize columns k-kb+1:k of A and use blocked code to
                    309: *           update columns 1:k-kb
                    310: *
                    311:             CALL DLASYF_ROOK( UPLO, K, NB, KB, A, LDA,
                    312:      $                        IPIV, WORK, LDWORK, IINFO )
                    313:          ELSE
                    314: *
                    315: *           Use unblocked code to factorize columns 1:k of A
                    316: *
                    317:             CALL DSYTF2_ROOK( UPLO, K, A, LDA, IPIV, IINFO )
                    318:             KB = K
                    319:          END IF
                    320: *
                    321: *        Set INFO on the first occurrence of a zero pivot
                    322: *
                    323:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    324:      $      INFO = IINFO     
                    325: *
                    326: *        No need to adjust IPIV
                    327: *
                    328: *        Decrease K and return to the start of the main loop
                    329: *
                    330:          K = K - KB
                    331:          GO TO 10
                    332: *
                    333:       ELSE
                    334: *
                    335: *        Factorize A as L*D*L**T using the lower triangle of A
                    336: *
                    337: *        K is the main loop index, increasing from 1 to N in steps of
                    338: *        KB, where KB is the number of columns factorized by DLASYF_ROOK;
                    339: *        KB is either NB or NB-1, or N-K+1 for the last block
                    340: *
                    341:          K = 1
                    342:    20    CONTINUE
                    343: *
                    344: *        If K > N, exit from loop
                    345: *
                    346:          IF( K.GT.N )
                    347:      $      GO TO 40
                    348: *
                    349:          IF( K.LE.N-NB ) THEN
                    350: *
                    351: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    352: *           update columns k+kb:n
                    353: *
                    354:             CALL DLASYF_ROOK( UPLO, N-K+1, NB, KB, A( K, K ), LDA,
                    355:      $                        IPIV( K ), WORK, LDWORK, IINFO )
                    356:          ELSE
                    357: *
                    358: *           Use unblocked code to factorize columns k:n of A
                    359: *
                    360:             CALL DSYTF2_ROOK( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ),
                    361:      $                   IINFO )
                    362:             KB = N - K + 1
                    363:          END IF
                    364: *
                    365: *        Set INFO on the first occurrence of a zero pivot
                    366: *
                    367:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    368:      $      INFO = IINFO + K - 1
                    369: *
                    370: *        Adjust IPIV
                    371: *
                    372:          DO 30 J = K, K + KB - 1
                    373:             IF( IPIV( J ).GT.0 ) THEN
                    374:                IPIV( J ) = IPIV( J ) + K - 1
                    375:             ELSE
                    376:                IPIV( J ) = IPIV( J ) - K + 1
                    377:             END IF
                    378:    30    CONTINUE
                    379: *
                    380: *        Increase K and return to the start of the main loop
                    381: *
                    382:          K = K + KB
                    383:          GO TO 20
                    384: *
                    385:       END IF
                    386: *
                    387:    40 CONTINUE
                    388:       WORK( 1 ) = LWKOPT
                    389:       RETURN
                    390: *
                    391: *     End of DSYTRF_ROOK
                    392: *
                    393:       END

CVSweb interface <joel.bertrand@systella.fr>