Annotation of rpl/lapack/lapack/dsytrf_rk.f, revision 1.4

1.1       bertrand    1: *> \brief \b DSYTRF_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm).
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSYTRF_RK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrf_rk.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrf_rk.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrf_rk.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
                     22: *                             INFO )
                     23: *
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDA, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), E ( * ), WORK( * )
                     31: *       ..
                     32: *
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *> DSYTRF_RK computes the factorization of a real symmetric matrix A
                     39: *> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
                     40: *>
                     41: *>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
                     42: *>
                     43: *> where U (or L) is unit upper (or lower) triangular matrix,
                     44: *> U**T (or L**T) is the transpose of U (or L), P is a permutation
                     45: *> matrix, P**T is the transpose of P, and D is symmetric and block
                     46: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
                     47: *>
                     48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     49: *> For more information see Further Details section.
                     50: *> \endverbatim
                     51: *
                     52: *  Arguments:
                     53: *  ==========
                     54: *
                     55: *> \param[in] UPLO
                     56: *> \verbatim
                     57: *>          UPLO is CHARACTER*1
                     58: *>          Specifies whether the upper or lower triangular part of the
                     59: *>          symmetric matrix A is stored:
                     60: *>          = 'U':  Upper triangular
                     61: *>          = 'L':  Lower triangular
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] N
                     65: *> \verbatim
                     66: *>          N is INTEGER
                     67: *>          The order of the matrix A.  N >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in,out] A
                     71: *> \verbatim
                     72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     73: *>          On entry, the symmetric matrix A.
                     74: *>            If UPLO = 'U': the leading N-by-N upper triangular part
                     75: *>            of A contains the upper triangular part of the matrix A,
                     76: *>            and the strictly lower triangular part of A is not
                     77: *>            referenced.
                     78: *>
                     79: *>            If UPLO = 'L': the leading N-by-N lower triangular part
                     80: *>            of A contains the lower triangular part of the matrix A,
                     81: *>            and the strictly upper triangular part of A is not
                     82: *>            referenced.
                     83: *>
                     84: *>          On exit, contains:
                     85: *>            a) ONLY diagonal elements of the symmetric block diagonal
                     86: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                     87: *>               (superdiagonal (or subdiagonal) elements of D
                     88: *>                are stored on exit in array E), and
                     89: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
                     90: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] LDA
                     94: *> \verbatim
                     95: *>          LDA is INTEGER
                     96: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[out] E
                    100: *> \verbatim
                    101: *>          E is DOUBLE PRECISION array, dimension (N)
                    102: *>          On exit, contains the superdiagonal (or subdiagonal)
                    103: *>          elements of the symmetric block diagonal matrix D
                    104: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
                    105: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                    106: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
                    107: *>
                    108: *>          NOTE: For 1-by-1 diagonal block D(k), where
                    109: *>          1 <= k <= N, the element E(k) is set to 0 in both
                    110: *>          UPLO = 'U' or UPLO = 'L' cases.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] IPIV
                    114: *> \verbatim
                    115: *>          IPIV is INTEGER array, dimension (N)
                    116: *>          IPIV describes the permutation matrix P in the factorization
                    117: *>          of matrix A as follows. The absolute value of IPIV(k)
                    118: *>          represents the index of row and column that were
                    119: *>          interchanged with the k-th row and column. The value of UPLO
                    120: *>          describes the order in which the interchanges were applied.
                    121: *>          Also, the sign of IPIV represents the block structure of
                    122: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
                    123: *>          diagonal blocks which correspond to 1 or 2 interchanges
                    124: *>          at each factorization step. For more info see Further
                    125: *>          Details section.
                    126: *>
                    127: *>          If UPLO = 'U',
                    128: *>          ( in factorization order, k decreases from N to 1 ):
                    129: *>            a) A single positive entry IPIV(k) > 0 means:
                    130: *>               D(k,k) is a 1-by-1 diagonal block.
                    131: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
                    132: *>               interchanged in the matrix A(1:N,1:N);
                    133: *>               If IPIV(k) = k, no interchange occurred.
                    134: *>
                    135: *>            b) A pair of consecutive negative entries
                    136: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
                    137: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                    138: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
                    139: *>               1) If -IPIV(k) != k, rows and columns
                    140: *>                  k and -IPIV(k) were interchanged
                    141: *>                  in the matrix A(1:N,1:N).
                    142: *>                  If -IPIV(k) = k, no interchange occurred.
                    143: *>               2) If -IPIV(k-1) != k-1, rows and columns
                    144: *>                  k-1 and -IPIV(k-1) were interchanged
                    145: *>                  in the matrix A(1:N,1:N).
                    146: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
                    147: *>
                    148: *>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
                    149: *>
                    150: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
                    151: *>
                    152: *>          If UPLO = 'L',
                    153: *>          ( in factorization order, k increases from 1 to N ):
                    154: *>            a) A single positive entry IPIV(k) > 0 means:
                    155: *>               D(k,k) is a 1-by-1 diagonal block.
                    156: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
                    157: *>               interchanged in the matrix A(1:N,1:N).
                    158: *>               If IPIV(k) = k, no interchange occurred.
                    159: *>
                    160: *>            b) A pair of consecutive negative entries
                    161: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
                    162: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    163: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
                    164: *>               1) If -IPIV(k) != k, rows and columns
                    165: *>                  k and -IPIV(k) were interchanged
                    166: *>                  in the matrix A(1:N,1:N).
                    167: *>                  If -IPIV(k) = k, no interchange occurred.
                    168: *>               2) If -IPIV(k+1) != k+1, rows and columns
                    169: *>                  k-1 and -IPIV(k-1) were interchanged
                    170: *>                  in the matrix A(1:N,1:N).
                    171: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
                    172: *>
                    173: *>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
                    174: *>
                    175: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] WORK
                    179: *> \verbatim
                    180: *>          WORK is DOUBLE PRECISION array, dimension ( MAX(1,LWORK) ).
                    181: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[in] LWORK
                    185: *> \verbatim
                    186: *>          LWORK is INTEGER
                    187: *>          The length of WORK.  LWORK >=1.  For best performance
                    188: *>          LWORK >= N*NB, where NB is the block size returned
                    189: *>          by ILAENV.
                    190: *>
                    191: *>          If LWORK = -1, then a workspace query is assumed;
                    192: *>          the routine only calculates the optimal size of the WORK
                    193: *>          array, returns this value as the first entry of the WORK
                    194: *>          array, and no error message related to LWORK is issued
                    195: *>          by XERBLA.
                    196: *> \endverbatim
                    197: *>
                    198: *> \param[out] INFO
                    199: *> \verbatim
                    200: *>          INFO is INTEGER
                    201: *>          = 0: successful exit
                    202: *>
                    203: *>          < 0: If INFO = -k, the k-th argument had an illegal value
                    204: *>
                    205: *>          > 0: If INFO = k, the matrix A is singular, because:
                    206: *>                 If UPLO = 'U': column k in the upper
                    207: *>                 triangular part of A contains all zeros.
                    208: *>                 If UPLO = 'L': column k in the lower
                    209: *>                 triangular part of A contains all zeros.
                    210: *>
                    211: *>               Therefore D(k,k) is exactly zero, and superdiagonal
                    212: *>               elements of column k of U (or subdiagonal elements of
                    213: *>               column k of L ) are all zeros. The factorization has
                    214: *>               been completed, but the block diagonal matrix D is
                    215: *>               exactly singular, and division by zero will occur if
                    216: *>               it is used to solve a system of equations.
                    217: *>
                    218: *>               NOTE: INFO only stores the first occurrence of
                    219: *>               a singularity, any subsequent occurrence of singularity
                    220: *>               is not stored in INFO even though the factorization
                    221: *>               always completes.
                    222: *> \endverbatim
                    223: *
                    224: *  Authors:
                    225: *  ========
                    226: *
                    227: *> \author Univ. of Tennessee
                    228: *> \author Univ. of California Berkeley
                    229: *> \author Univ. of Colorado Denver
                    230: *> \author NAG Ltd.
                    231: *
                    232: *> \ingroup doubleSYcomputational
                    233: *
                    234: *> \par Further Details:
                    235: *  =====================
                    236: *>
                    237: *> \verbatim
                    238: *> TODO: put correct description
                    239: *> \endverbatim
                    240: *
                    241: *> \par Contributors:
                    242: *  ==================
                    243: *>
                    244: *> \verbatim
                    245: *>
                    246: *>  December 2016,  Igor Kozachenko,
                    247: *>                  Computer Science Division,
                    248: *>                  University of California, Berkeley
                    249: *>
                    250: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    251: *>                  School of Mathematics,
                    252: *>                  University of Manchester
                    253: *>
                    254: *> \endverbatim
                    255: *
                    256: *  =====================================================================
                    257:       SUBROUTINE DSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
                    258:      $                      INFO )
                    259: *
1.4     ! bertrand  260: *  -- LAPACK computational routine --
1.1       bertrand  261: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    262: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    263: *
                    264: *     .. Scalar Arguments ..
                    265:       CHARACTER          UPLO
                    266:       INTEGER            INFO, LDA, LWORK, N
                    267: *     ..
                    268: *     .. Array Arguments ..
                    269:       INTEGER            IPIV( * )
                    270:       DOUBLE PRECISION   A( LDA, * ), E( * ), WORK( * )
                    271: *     ..
                    272: *
                    273: *  =====================================================================
                    274: *
                    275: *     .. Local Scalars ..
                    276:       LOGICAL            LQUERY, UPPER
                    277:       INTEGER            I, IINFO, IP, IWS, K, KB, LDWORK, LWKOPT,
                    278:      $                   NB, NBMIN
                    279: *     ..
                    280: *     .. External Functions ..
                    281:       LOGICAL            LSAME
                    282:       INTEGER            ILAENV
                    283:       EXTERNAL           LSAME, ILAENV
                    284: *     ..
                    285: *     .. External Subroutines ..
                    286:       EXTERNAL           DLASYF_RK, DSYTF2_RK, DSWAP, XERBLA
                    287: *     ..
                    288: *     .. Intrinsic Functions ..
                    289:       INTRINSIC          ABS, MAX
                    290: *     ..
                    291: *     .. Executable Statements ..
                    292: *
                    293: *     Test the input parameters.
                    294: *
                    295:       INFO = 0
                    296:       UPPER = LSAME( UPLO, 'U' )
                    297:       LQUERY = ( LWORK.EQ.-1 )
                    298:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    299:          INFO = -1
                    300:       ELSE IF( N.LT.0 ) THEN
                    301:          INFO = -2
                    302:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    303:          INFO = -4
                    304:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    305:          INFO = -8
                    306:       END IF
                    307: *
                    308:       IF( INFO.EQ.0 ) THEN
                    309: *
                    310: *        Determine the block size
                    311: *
                    312:          NB = ILAENV( 1, 'DSYTRF_RK', UPLO, N, -1, -1, -1 )
                    313:          LWKOPT = N*NB
                    314:          WORK( 1 ) = LWKOPT
                    315:       END IF
                    316: *
                    317:       IF( INFO.NE.0 ) THEN
                    318:          CALL XERBLA( 'DSYTRF_RK', -INFO )
                    319:          RETURN
                    320:       ELSE IF( LQUERY ) THEN
                    321:          RETURN
                    322:       END IF
                    323: *
                    324:       NBMIN = 2
                    325:       LDWORK = N
                    326:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    327:          IWS = LDWORK*NB
                    328:          IF( LWORK.LT.IWS ) THEN
                    329:             NB = MAX( LWORK / LDWORK, 1 )
                    330:             NBMIN = MAX( 2, ILAENV( 2, 'DSYTRF_RK',
                    331:      $                              UPLO, N, -1, -1, -1 ) )
                    332:          END IF
                    333:       ELSE
                    334:          IWS = 1
                    335:       END IF
                    336:       IF( NB.LT.NBMIN )
                    337:      $   NB = N
                    338: *
                    339:       IF( UPPER ) THEN
                    340: *
                    341: *        Factorize A as U*D*U**T using the upper triangle of A
                    342: *
                    343: *        K is the main loop index, decreasing from N to 1 in steps of
                    344: *        KB, where KB is the number of columns factorized by DLASYF_RK;
                    345: *        KB is either NB or NB-1, or K for the last block
                    346: *
                    347:          K = N
                    348:    10    CONTINUE
                    349: *
                    350: *        If K < 1, exit from loop
                    351: *
                    352:          IF( K.LT.1 )
                    353:      $      GO TO 15
                    354: *
                    355:          IF( K.GT.NB ) THEN
                    356: *
                    357: *           Factorize columns k-kb+1:k of A and use blocked code to
                    358: *           update columns 1:k-kb
                    359: *
                    360:             CALL DLASYF_RK( UPLO, K, NB, KB, A, LDA, E,
                    361:      $                      IPIV, WORK, LDWORK, IINFO )
                    362:          ELSE
                    363: *
                    364: *           Use unblocked code to factorize columns 1:k of A
                    365: *
                    366:             CALL DSYTF2_RK( UPLO, K, A, LDA, E, IPIV, IINFO )
                    367:             KB = K
                    368:          END IF
                    369: *
                    370: *        Set INFO on the first occurrence of a zero pivot
                    371: *
                    372:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    373:      $      INFO = IINFO
                    374: *
                    375: *        No need to adjust IPIV
                    376: *
                    377: *
                    378: *        Apply permutations to the leading panel 1:k-1
                    379: *
                    380: *        Read IPIV from the last block factored, i.e.
                    381: *        indices  k-kb+1:k and apply row permutations to the
                    382: *        last k+1 colunms k+1:N after that block
                    383: *        (We can do the simple loop over IPIV with decrement -1,
                    384: *        since the ABS value of IPIV( I ) represents the row index
                    385: *        of the interchange with row i in both 1x1 and 2x2 pivot cases)
                    386: *
                    387:          IF( K.LT.N ) THEN
                    388:             DO I = K, ( K - KB + 1 ), -1
                    389:                IP = ABS( IPIV( I ) )
                    390:                IF( IP.NE.I ) THEN
                    391:                   CALL DSWAP( N-K, A( I, K+1 ), LDA,
                    392:      $                        A( IP, K+1 ), LDA )
                    393:                END IF
                    394:             END DO
                    395:          END IF
                    396: *
                    397: *        Decrease K and return to the start of the main loop
                    398: *
                    399:          K = K - KB
                    400:          GO TO 10
                    401: *
                    402: *        This label is the exit from main loop over K decreasing
                    403: *        from N to 1 in steps of KB
                    404: *
                    405:    15    CONTINUE
                    406: *
                    407:       ELSE
                    408: *
                    409: *        Factorize A as L*D*L**T using the lower triangle of A
                    410: *
                    411: *        K is the main loop index, increasing from 1 to N in steps of
                    412: *        KB, where KB is the number of columns factorized by DLASYF_RK;
                    413: *        KB is either NB or NB-1, or N-K+1 for the last block
                    414: *
                    415:          K = 1
                    416:    20    CONTINUE
                    417: *
                    418: *        If K > N, exit from loop
                    419: *
                    420:          IF( K.GT.N )
                    421:      $      GO TO 35
                    422: *
                    423:          IF( K.LE.N-NB ) THEN
                    424: *
                    425: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    426: *           update columns k+kb:n
                    427: *
                    428:             CALL DLASYF_RK( UPLO, N-K+1, NB, KB, A( K, K ), LDA, E( K ),
                    429:      $                        IPIV( K ), WORK, LDWORK, IINFO )
                    430: 
                    431: 
                    432:          ELSE
                    433: *
                    434: *           Use unblocked code to factorize columns k:n of A
                    435: *
                    436:             CALL DSYTF2_RK( UPLO, N-K+1, A( K, K ), LDA, E( K ),
                    437:      $                      IPIV( K ), IINFO )
                    438:             KB = N - K + 1
                    439: *
                    440:          END IF
                    441: *
                    442: *        Set INFO on the first occurrence of a zero pivot
                    443: *
                    444:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    445:      $      INFO = IINFO + K - 1
                    446: *
                    447: *        Adjust IPIV
                    448: *
                    449:          DO I = K, K + KB - 1
                    450:             IF( IPIV( I ).GT.0 ) THEN
                    451:                IPIV( I ) = IPIV( I ) + K - 1
                    452:             ELSE
                    453:                IPIV( I ) = IPIV( I ) - K + 1
                    454:             END IF
                    455:          END DO
                    456: *
                    457: *        Apply permutations to the leading panel 1:k-1
                    458: *
                    459: *        Read IPIV from the last block factored, i.e.
                    460: *        indices  k:k+kb-1 and apply row permutations to the
                    461: *        first k-1 colunms 1:k-1 before that block
                    462: *        (We can do the simple loop over IPIV with increment 1,
                    463: *        since the ABS value of IPIV( I ) represents the row index
                    464: *        of the interchange with row i in both 1x1 and 2x2 pivot cases)
                    465: *
                    466:          IF( K.GT.1 ) THEN
                    467:             DO I = K, ( K + KB - 1 ), 1
                    468:                IP = ABS( IPIV( I ) )
                    469:                IF( IP.NE.I ) THEN
                    470:                   CALL DSWAP( K-1, A( I, 1 ), LDA,
                    471:      $                        A( IP, 1 ), LDA )
                    472:                END IF
                    473:             END DO
                    474:          END IF
                    475: *
                    476: *        Increase K and return to the start of the main loop
                    477: *
                    478:          K = K + KB
                    479:          GO TO 20
                    480: *
                    481: *        This label is the exit from main loop over K increasing
                    482: *        from 1 to N in steps of KB
                    483: *
                    484:    35    CONTINUE
                    485: *
                    486: *     End Lower
                    487: *
                    488:       END IF
                    489: *
                    490:       WORK( 1 ) = LWKOPT
                    491:       RETURN
                    492: *
                    493: *     End of DSYTRF_RK
                    494: *
                    495:       END

CVSweb interface <joel.bertrand@systella.fr>