Annotation of rpl/lapack/lapack/dsytrf.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            INFO, LDA, LWORK, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            IPIV( * )
                     14:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DSYTRF computes the factorization of a real symmetric matrix A using
                     21: *  the Bunch-Kaufman diagonal pivoting method.  The form of the
                     22: *  factorization is
                     23: *
                     24: *     A = U*D*U**T  or  A = L*D*L**T
                     25: *
                     26: *  where U (or L) is a product of permutation and unit upper (lower)
                     27: *  triangular matrices, and D is symmetric and block diagonal with
                     28: *  1-by-1 and 2-by-2 diagonal blocks.
                     29: *
                     30: *  This is the blocked version of the algorithm, calling Level 3 BLAS.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  UPLO    (input) CHARACTER*1
                     36: *          = 'U':  Upper triangle of A is stored;
                     37: *          = 'L':  Lower triangle of A is stored.
                     38: *
                     39: *  N       (input) INTEGER
                     40: *          The order of the matrix A.  N >= 0.
                     41: *
                     42: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     43: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     44: *          N-by-N upper triangular part of A contains the upper
                     45: *          triangular part of the matrix A, and the strictly lower
                     46: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     47: *          leading N-by-N lower triangular part of A contains the lower
                     48: *          triangular part of the matrix A, and the strictly upper
                     49: *          triangular part of A is not referenced.
                     50: *
                     51: *          On exit, the block diagonal matrix D and the multipliers used
                     52: *          to obtain the factor U or L (see below for further details).
                     53: *
                     54: *  LDA     (input) INTEGER
                     55: *          The leading dimension of the array A.  LDA >= max(1,N).
                     56: *
                     57: *  IPIV    (output) INTEGER array, dimension (N)
                     58: *          Details of the interchanges and the block structure of D.
                     59: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     60: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
                     61: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     62: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     63: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     64: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     65: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                     66: *
                     67: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     68: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     69: *
                     70: *  LWORK   (input) INTEGER
                     71: *          The length of WORK.  LWORK >=1.  For best performance
                     72: *          LWORK >= N*NB, where NB is the block size returned by ILAENV.
                     73: *
                     74: *          If LWORK = -1, then a workspace query is assumed; the routine
                     75: *          only calculates the optimal size of the WORK array, returns
                     76: *          this value as the first entry of the WORK array, and no error
                     77: *          message related to LWORK is issued by XERBLA.
                     78: *
                     79: *  INFO    (output) INTEGER
                     80: *          = 0:  successful exit
                     81: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     82: *          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                     83: *                has been completed, but the block diagonal matrix D is
                     84: *                exactly singular, and division by zero will occur if it
                     85: *                is used to solve a system of equations.
                     86: *
                     87: *  Further Details
                     88: *  ===============
                     89: *
                     90: *  If UPLO = 'U', then A = U*D*U', where
                     91: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                     92: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                     93: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                     94: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                     95: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                     96: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                     97: *
                     98: *             (   I    v    0   )   k-s
                     99: *     U(k) =  (   0    I    0   )   s
                    100: *             (   0    0    I   )   n-k
                    101: *                k-s   s   n-k
                    102: *
                    103: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    104: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    105: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    106: *
                    107: *  If UPLO = 'L', then A = L*D*L', where
                    108: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    109: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    110: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    111: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    112: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    113: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    114: *
                    115: *             (   I    0     0   )  k-1
                    116: *     L(k) =  (   0    I     0   )  s
                    117: *             (   0    v     I   )  n-k-s+1
                    118: *                k-1   s  n-k-s+1
                    119: *
                    120: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    121: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    122: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    123: *
                    124: *  =====================================================================
                    125: *
                    126: *     .. Local Scalars ..
                    127:       LOGICAL            LQUERY, UPPER
                    128:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    129: *     ..
                    130: *     .. External Functions ..
                    131:       LOGICAL            LSAME
                    132:       INTEGER            ILAENV
                    133:       EXTERNAL           LSAME, ILAENV
                    134: *     ..
                    135: *     .. External Subroutines ..
                    136:       EXTERNAL           DLASYF, DSYTF2, XERBLA
                    137: *     ..
                    138: *     .. Intrinsic Functions ..
                    139:       INTRINSIC          MAX
                    140: *     ..
                    141: *     .. Executable Statements ..
                    142: *
                    143: *     Test the input parameters.
                    144: *
                    145:       INFO = 0
                    146:       UPPER = LSAME( UPLO, 'U' )
                    147:       LQUERY = ( LWORK.EQ.-1 )
                    148:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    149:          INFO = -1
                    150:       ELSE IF( N.LT.0 ) THEN
                    151:          INFO = -2
                    152:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    153:          INFO = -4
                    154:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    155:          INFO = -7
                    156:       END IF
                    157: *
                    158:       IF( INFO.EQ.0 ) THEN
                    159: *
                    160: *        Determine the block size
                    161: *
                    162:          NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
                    163:          LWKOPT = N*NB
                    164:          WORK( 1 ) = LWKOPT
                    165:       END IF
                    166: *
                    167:       IF( INFO.NE.0 ) THEN
                    168:          CALL XERBLA( 'DSYTRF', -INFO )
                    169:          RETURN
                    170:       ELSE IF( LQUERY ) THEN
                    171:          RETURN
                    172:       END IF
                    173: *
                    174:       NBMIN = 2
                    175:       LDWORK = N
                    176:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    177:          IWS = LDWORK*NB
                    178:          IF( LWORK.LT.IWS ) THEN
                    179:             NB = MAX( LWORK / LDWORK, 1 )
                    180:             NBMIN = MAX( 2, ILAENV( 2, 'DSYTRF', UPLO, N, -1, -1, -1 ) )
                    181:          END IF
                    182:       ELSE
                    183:          IWS = 1
                    184:       END IF
                    185:       IF( NB.LT.NBMIN )
                    186:      $   NB = N
                    187: *
                    188:       IF( UPPER ) THEN
                    189: *
                    190: *        Factorize A as U*D*U' using the upper triangle of A
                    191: *
                    192: *        K is the main loop index, decreasing from N to 1 in steps of
                    193: *        KB, where KB is the number of columns factorized by DLASYF;
                    194: *        KB is either NB or NB-1, or K for the last block
                    195: *
                    196:          K = N
                    197:    10    CONTINUE
                    198: *
                    199: *        If K < 1, exit from loop
                    200: *
                    201:          IF( K.LT.1 )
                    202:      $      GO TO 40
                    203: *
                    204:          IF( K.GT.NB ) THEN
                    205: *
                    206: *           Factorize columns k-kb+1:k of A and use blocked code to
                    207: *           update columns 1:k-kb
                    208: *
                    209:             CALL DLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, LDWORK,
                    210:      $                   IINFO )
                    211:          ELSE
                    212: *
                    213: *           Use unblocked code to factorize columns 1:k of A
                    214: *
                    215:             CALL DSYTF2( UPLO, K, A, LDA, IPIV, IINFO )
                    216:             KB = K
                    217:          END IF
                    218: *
                    219: *        Set INFO on the first occurrence of a zero pivot
                    220: *
                    221:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    222:      $      INFO = IINFO
                    223: *
                    224: *        Decrease K and return to the start of the main loop
                    225: *
                    226:          K = K - KB
                    227:          GO TO 10
                    228: *
                    229:       ELSE
                    230: *
                    231: *        Factorize A as L*D*L' using the lower triangle of A
                    232: *
                    233: *        K is the main loop index, increasing from 1 to N in steps of
                    234: *        KB, where KB is the number of columns factorized by DLASYF;
                    235: *        KB is either NB or NB-1, or N-K+1 for the last block
                    236: *
                    237:          K = 1
                    238:    20    CONTINUE
                    239: *
                    240: *        If K > N, exit from loop
                    241: *
                    242:          IF( K.GT.N )
                    243:      $      GO TO 40
                    244: *
                    245:          IF( K.LE.N-NB ) THEN
                    246: *
                    247: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    248: *           update columns k+kb:n
                    249: *
                    250:             CALL DLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
                    251:      $                   WORK, LDWORK, IINFO )
                    252:          ELSE
                    253: *
                    254: *           Use unblocked code to factorize columns k:n of A
                    255: *
                    256:             CALL DSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
                    257:             KB = N - K + 1
                    258:          END IF
                    259: *
                    260: *        Set INFO on the first occurrence of a zero pivot
                    261: *
                    262:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    263:      $      INFO = IINFO + K - 1
                    264: *
                    265: *        Adjust IPIV
                    266: *
                    267:          DO 30 J = K, K + KB - 1
                    268:             IF( IPIV( J ).GT.0 ) THEN
                    269:                IPIV( J ) = IPIV( J ) + K - 1
                    270:             ELSE
                    271:                IPIV( J ) = IPIV( J ) - K + 1
                    272:             END IF
                    273:    30    CONTINUE
                    274: *
                    275: *        Increase K and return to the start of the main loop
                    276: *
                    277:          K = K + KB
                    278:          GO TO 20
                    279: *
                    280:       END IF
                    281: *
                    282:    40 CONTINUE
                    283:       WORK( 1 ) = LWKOPT
                    284:       RETURN
                    285: *
                    286: *     End of DSYTRF
                    287: *
                    288:       END

CVSweb interface <joel.bertrand@systella.fr>