File:  [local] / rpl / lapack / lapack / dsytrd_sb2st.F
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:10 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRD_SB2ST + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrd_sb2st.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrd_sb2st.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrd_sb2st.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, 
   22: *                               D, E, HOUS, LHOUS, WORK, LWORK, INFO )
   23: *
   24: *       #if defined(_OPENMP)
   25: *       use omp_lib
   26: *       #endif
   27: *
   28: *       IMPLICIT NONE
   29: *
   30: *       .. Scalar Arguments ..
   31: *       CHARACTER          STAGE1, UPLO, VECT
   32: *       INTEGER            N, KD, IB, LDAB, LHOUS, LWORK, INFO
   33: *       ..
   34: *       .. Array Arguments ..
   35: *       DOUBLE PRECISION   D( * ), E( * )
   36: *       DOUBLE PRECISION   AB( LDAB, * ), HOUS( * ), WORK( * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric
   46: *> tridiagonal form T by a orthogonal similarity transformation:
   47: *> Q**T * A * Q = T.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] STAGE1
   54: *> \verbatim
   55: *>          STAGE1 is CHARACTER*1
   56: *>          = 'N':  "No": to mention that the stage 1 of the reduction  
   57: *>                  from dense to band using the dsytrd_sy2sb routine
   58: *>                  was not called before this routine to reproduce AB. 
   59: *>                  In other term this routine is called as standalone. 
   60: *>          = 'Y':  "Yes": to mention that the stage 1 of the 
   61: *>                  reduction from dense to band using the dsytrd_sy2sb 
   62: *>                  routine has been called to produce AB (e.g., AB is
   63: *>                  the output of dsytrd_sy2sb.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] VECT
   67: *> \verbatim
   68: *>          VECT is CHARACTER*1
   69: *>          = 'N':  No need for the Housholder representation, 
   70: *>                  and thus LHOUS is of size max(1, 4*N);
   71: *>          = 'V':  the Householder representation is needed to 
   72: *>                  either generate or to apply Q later on, 
   73: *>                  then LHOUS is to be queried and computed.
   74: *>                  (NOT AVAILABLE IN THIS RELEASE).
   75: *> \endverbatim
   76: *>
   77: *> \param[in] UPLO
   78: *> \verbatim
   79: *>          UPLO is CHARACTER*1
   80: *>          = 'U':  Upper triangle of A is stored;
   81: *>          = 'L':  Lower triangle of A is stored.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] N
   85: *> \verbatim
   86: *>          N is INTEGER
   87: *>          The order of the matrix A.  N >= 0.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] KD
   91: *> \verbatim
   92: *>          KD is INTEGER
   93: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   94: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] AB
   98: *> \verbatim
   99: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
  100: *>          On entry, the upper or lower triangle of the symmetric band
  101: *>          matrix A, stored in the first KD+1 rows of the array.  The
  102: *>          j-th column of A is stored in the j-th column of the array AB
  103: *>          as follows:
  104: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  105: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
  106: *>          On exit, the diagonal elements of AB are overwritten by the
  107: *>          diagonal elements of the tridiagonal matrix T; if KD > 0, the
  108: *>          elements on the first superdiagonal (if UPLO = 'U') or the
  109: *>          first subdiagonal (if UPLO = 'L') are overwritten by the
  110: *>          off-diagonal elements of T; the rest of AB is overwritten by
  111: *>          values generated during the reduction.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] LDAB
  115: *> \verbatim
  116: *>          LDAB is INTEGER
  117: *>          The leading dimension of the array AB.  LDAB >= KD+1.
  118: *> \endverbatim
  119: *>
  120: *> \param[out] D
  121: *> \verbatim
  122: *>          D is DOUBLE PRECISION array, dimension (N)
  123: *>          The diagonal elements of the tridiagonal matrix T.
  124: *> \endverbatim
  125: *>
  126: *> \param[out] E
  127: *> \verbatim
  128: *>          E is DOUBLE PRECISION array, dimension (N-1)
  129: *>          The off-diagonal elements of the tridiagonal matrix T:
  130: *>          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
  131: *> \endverbatim
  132: *>
  133: *> \param[out] HOUS
  134: *> \verbatim
  135: *>          HOUS is DOUBLE PRECISION array, dimension LHOUS, that
  136: *>          store the Householder representation.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LHOUS
  140: *> \verbatim
  141: *>          LHOUS is INTEGER
  142: *>          The dimension of the array HOUS. LHOUS = MAX(1, dimension)
  143: *>          If LWORK = -1, or LHOUS=-1,
  144: *>          then a query is assumed; the routine
  145: *>          only calculates the optimal size of the HOUS array, returns
  146: *>          this value as the first entry of the HOUS array, and no error
  147: *>          message related to LHOUS is issued by XERBLA.
  148: *>          LHOUS = MAX(1, dimension) where
  149: *>          dimension = 4*N if VECT='N'
  150: *>          not available now if VECT='H'     
  151: *> \endverbatim
  152: *>
  153: *> \param[out] WORK
  154: *> \verbatim
  155: *>          WORK is DOUBLE PRECISION array, dimension LWORK.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] LWORK
  159: *> \verbatim
  160: *>          LWORK is INTEGER
  161: *>          The dimension of the array WORK. LWORK = MAX(1, dimension)
  162: *>          If LWORK = -1, or LHOUS=-1,
  163: *>          then a workspace query is assumed; the routine
  164: *>          only calculates the optimal size of the WORK array, returns
  165: *>          this value as the first entry of the WORK array, and no error
  166: *>          message related to LWORK is issued by XERBLA.
  167: *>          LWORK = MAX(1, dimension) where
  168: *>          dimension   = (2KD+1)*N + KD*NTHREADS
  169: *>          where KD is the blocking size of the reduction,
  170: *>          FACTOPTNB is the blocking used by the QR or LQ
  171: *>          algorithm, usually FACTOPTNB=128 is a good choice
  172: *>          NTHREADS is the number of threads used when
  173: *>          openMP compilation is enabled, otherwise =1.
  174: *> \endverbatim
  175: *>
  176: *> \param[out] INFO
  177: *> \verbatim
  178: *>          INFO is INTEGER
  179: *>          = 0:  successful exit
  180: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  181: *> \endverbatim
  182: *
  183: *  Authors:
  184: *  ========
  185: *
  186: *> \author Univ. of Tennessee
  187: *> \author Univ. of California Berkeley
  188: *> \author Univ. of Colorado Denver
  189: *> \author NAG Ltd.
  190: *
  191: *> \ingroup real16OTHERcomputational
  192: *
  193: *> \par Further Details:
  194: *  =====================
  195: *>
  196: *> \verbatim
  197: *>
  198: *>  Implemented by Azzam Haidar.
  199: *>
  200: *>  All details are available on technical report, SC11, SC13 papers.
  201: *>
  202: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  203: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
  204: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
  205: *>  of 2011 International Conference for High Performance Computing,
  206: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  207: *>  Article 8 , 11 pages.
  208: *>  http://doi.acm.org/10.1145/2063384.2063394
  209: *>
  210: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  211: *>  An improved parallel singular value algorithm and its implementation 
  212: *>  for multicore hardware, In Proceedings of 2013 International Conference
  213: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  214: *>  Denver, Colorado, USA, 2013.
  215: *>  Article 90, 12 pages.
  216: *>  http://doi.acm.org/10.1145/2503210.2503292
  217: *>
  218: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  219: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  220: *>  calculations based on fine-grained memory aware tasks.
  221: *>  International Journal of High Performance Computing Applications.
  222: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
  223: *>  http://hpc.sagepub.com/content/28/2/196 
  224: *>
  225: *> \endverbatim
  226: *>
  227: *  =====================================================================
  228:       SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, 
  229:      $                         D, E, HOUS, LHOUS, WORK, LWORK, INFO )
  230: *
  231: #if defined(_OPENMP)
  232:       use omp_lib
  233: #endif
  234: *
  235:       IMPLICIT NONE
  236: *
  237: *  -- LAPACK computational routine --
  238: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  239: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  240: *
  241: *     .. Scalar Arguments ..
  242:       CHARACTER          STAGE1, UPLO, VECT
  243:       INTEGER            N, KD, LDAB, LHOUS, LWORK, INFO
  244: *     ..
  245: *     .. Array Arguments ..
  246:       DOUBLE PRECISION   D( * ), E( * )
  247:       DOUBLE PRECISION   AB( LDAB, * ), HOUS( * ), WORK( * )
  248: *     ..
  249: *
  250: *  =====================================================================
  251: *
  252: *     .. Parameters ..
  253:       DOUBLE PRECISION   RZERO
  254:       DOUBLE PRECISION   ZERO, ONE
  255:       PARAMETER          ( RZERO = 0.0D+0,
  256:      $                   ZERO = 0.0D+0,
  257:      $                   ONE  = 1.0D+0 )
  258: *     ..
  259: *     .. Local Scalars ..
  260:       LOGICAL            LQUERY, WANTQ, UPPER, AFTERS1
  261:       INTEGER            I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST, 
  262:      $                   ED, STIND, EDIND, BLKLASTIND, COLPT, THED,
  263:      $                   STEPERCOL, GRSIZ, THGRSIZ, THGRNB, THGRID,
  264:      $                   NBTILES, TTYPE, TID, NTHREADS, DEBUG,
  265:      $                   ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS, 
  266:      $                   INDA, INDW, APOS, SIZEA, LDA, INDV, INDTAU,
  267:      $                   SIDEV, SIZETAU, LDV, LHMIN, LWMIN
  268: *     ..
  269: *     .. External Subroutines ..
  270:       EXTERNAL           DSB2ST_KERNELS, DLACPY, DLASET, XERBLA
  271: *     ..
  272: *     .. Intrinsic Functions ..
  273:       INTRINSIC          MIN, MAX, CEILING, REAL
  274: *     ..
  275: *     .. External Functions ..
  276:       LOGICAL            LSAME
  277:       INTEGER            ILAENV2STAGE 
  278:       EXTERNAL           LSAME, ILAENV2STAGE
  279: *     ..
  280: *     .. Executable Statements ..
  281: *
  282: *     Determine the minimal workspace size required.
  283: *     Test the input parameters
  284: *
  285:       DEBUG   = 0
  286:       INFO    = 0
  287:       AFTERS1 = LSAME( STAGE1, 'Y' )
  288:       WANTQ   = LSAME( VECT, 'V' )
  289:       UPPER   = LSAME( UPLO, 'U' )
  290:       LQUERY  = ( LWORK.EQ.-1 ) .OR. ( LHOUS.EQ.-1 )
  291: *
  292: *     Determine the block size, the workspace size and the hous size.
  293: *
  294:       IB     = ILAENV2STAGE( 2, 'DSYTRD_SB2ST', VECT, N, KD, -1, -1 )
  295:       LHMIN  = ILAENV2STAGE( 3, 'DSYTRD_SB2ST', VECT, N, KD, IB, -1 )
  296:       LWMIN  = ILAENV2STAGE( 4, 'DSYTRD_SB2ST', VECT, N, KD, IB, -1 )
  297: *
  298:       IF( .NOT.AFTERS1 .AND. .NOT.LSAME( STAGE1, 'N' ) ) THEN
  299:          INFO = -1
  300:       ELSE IF( .NOT.LSAME( VECT, 'N' ) ) THEN
  301:          INFO = -2
  302:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  303:          INFO = -3
  304:       ELSE IF( N.LT.0 ) THEN
  305:          INFO = -4
  306:       ELSE IF( KD.LT.0 ) THEN
  307:          INFO = -5
  308:       ELSE IF( LDAB.LT.(KD+1) ) THEN
  309:          INFO = -7
  310:       ELSE IF( LHOUS.LT.LHMIN .AND. .NOT.LQUERY ) THEN
  311:          INFO = -11
  312:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  313:          INFO = -13
  314:       END IF
  315: *
  316:       IF( INFO.EQ.0 ) THEN
  317:          HOUS( 1 ) = LHMIN
  318:          WORK( 1 ) = LWMIN
  319:       END IF
  320: *
  321:       IF( INFO.NE.0 ) THEN
  322:          CALL XERBLA( 'DSYTRD_SB2ST', -INFO )
  323:          RETURN
  324:       ELSE IF( LQUERY ) THEN
  325:          RETURN
  326:       END IF
  327: *
  328: *     Quick return if possible
  329: *
  330:       IF( N.EQ.0 ) THEN
  331:           HOUS( 1 ) = 1
  332:           WORK( 1 ) = 1
  333:           RETURN
  334:       END IF
  335: *
  336: *     Determine pointer position
  337: *
  338:       LDV      = KD + IB
  339:       SIZETAU  = 2 * N
  340:       SIDEV    = 2 * N
  341:       INDTAU   = 1
  342:       INDV     = INDTAU + SIZETAU
  343:       LDA      = 2 * KD + 1
  344:       SIZEA    = LDA * N
  345:       INDA     = 1
  346:       INDW     = INDA + SIZEA
  347:       NTHREADS = 1
  348:       TID      = 0
  349: *
  350:       IF( UPPER ) THEN
  351:           APOS     = INDA + KD
  352:           AWPOS    = INDA
  353:           DPOS     = APOS + KD
  354:           OFDPOS   = DPOS - 1
  355:           ABDPOS   = KD + 1
  356:           ABOFDPOS = KD
  357:       ELSE
  358:           APOS     = INDA 
  359:           AWPOS    = INDA + KD + 1
  360:           DPOS     = APOS
  361:           OFDPOS   = DPOS + 1
  362:           ABDPOS   = 1
  363:           ABOFDPOS = 2
  364: 
  365:       ENDIF
  366: *      
  367: *     Case KD=0: 
  368: *     The matrix is diagonal. We just copy it (convert to "real" for 
  369: *     real because D is double and the imaginary part should be 0) 
  370: *     and store it in D. A sequential code here is better or 
  371: *     in a parallel environment it might need two cores for D and E
  372: *
  373:       IF( KD.EQ.0 ) THEN
  374:           DO 30 I = 1, N
  375:               D( I ) = ( AB( ABDPOS, I ) )
  376:    30     CONTINUE
  377:           DO 40 I = 1, N-1
  378:               E( I ) = RZERO
  379:    40     CONTINUE
  380: *
  381:           HOUS( 1 ) = 1
  382:           WORK( 1 ) = 1
  383:           RETURN
  384:       END IF
  385: *      
  386: *     Case KD=1: 
  387: *     The matrix is already Tridiagonal. We have to make diagonal 
  388: *     and offdiagonal elements real, and store them in D and E.
  389: *     For that, for real precision just copy the diag and offdiag 
  390: *     to D and E while for the COMPLEX case the bulge chasing is  
  391: *     performed to convert the hermetian tridiagonal to symmetric 
  392: *     tridiagonal. A simpler conversion formula might be used, but then 
  393: *     updating the Q matrix will be required and based if Q is generated
  394: *     or not this might complicate the story. 
  395: *      
  396:       IF( KD.EQ.1 ) THEN
  397:           DO 50 I = 1, N
  398:               D( I ) = ( AB( ABDPOS, I ) )
  399:    50     CONTINUE
  400: *
  401:           IF( UPPER ) THEN
  402:               DO 60 I = 1, N-1
  403:                  E( I ) = ( AB( ABOFDPOS, I+1 ) )
  404:    60         CONTINUE
  405:           ELSE
  406:               DO 70 I = 1, N-1
  407:                  E( I ) = ( AB( ABOFDPOS, I ) )
  408:    70         CONTINUE
  409:           ENDIF
  410: *
  411:           HOUS( 1 ) = 1
  412:           WORK( 1 ) = 1
  413:           RETURN
  414:       END IF
  415: *
  416: *     Main code start here. 
  417: *     Reduce the symmetric band of A to a tridiagonal matrix.
  418: *
  419:       THGRSIZ   = N
  420:       GRSIZ     = 1
  421:       SHIFT     = 3
  422:       NBTILES   = CEILING( REAL(N)/REAL(KD) )
  423:       STEPERCOL = CEILING( REAL(SHIFT)/REAL(GRSIZ) )
  424:       THGRNB    = CEILING( REAL(N-1)/REAL(THGRSIZ) )
  425: *      
  426:       CALL DLACPY( "A", KD+1, N, AB, LDAB, WORK( APOS ), LDA )
  427:       CALL DLASET( "A", KD,   N, ZERO, ZERO, WORK( AWPOS ), LDA )
  428: *
  429: *
  430: *     openMP parallelisation start here
  431: *
  432: #if defined(_OPENMP)
  433: !$OMP PARALLEL PRIVATE( TID, THGRID, BLKLASTIND )
  434: !$OMP$         PRIVATE( THED, I, M, K, ST, ED, STT, SWEEPID ) 
  435: !$OMP$         PRIVATE( MYID, TTYPE, COLPT, STIND, EDIND )
  436: !$OMP$         SHARED ( UPLO, WANTQ, INDV, INDTAU, HOUS, WORK)
  437: !$OMP$         SHARED ( N, KD, IB, NBTILES, LDA, LDV, INDA )
  438: !$OMP$         SHARED ( STEPERCOL, THGRNB, THGRSIZ, GRSIZ, SHIFT )
  439: !$OMP MASTER
  440: #endif
  441: *
  442: *     main bulge chasing loop
  443: *      
  444:       DO 100 THGRID = 1, THGRNB
  445:           STT  = (THGRID-1)*THGRSIZ+1
  446:           THED = MIN( (STT + THGRSIZ -1), (N-1))
  447:           DO 110 I = STT, N-1
  448:               ED = MIN( I, THED )
  449:               IF( STT.GT.ED ) EXIT
  450:               DO 120 M = 1, STEPERCOL
  451:                   ST = STT
  452:                   DO 130 SWEEPID = ST, ED
  453:                       DO 140 K = 1, GRSIZ
  454:                           MYID  = (I-SWEEPID)*(STEPERCOL*GRSIZ) 
  455:      $                           + (M-1)*GRSIZ + K
  456:                           IF ( MYID.EQ.1 ) THEN
  457:                               TTYPE = 1
  458:                           ELSE
  459:                               TTYPE = MOD( MYID, 2 ) + 2
  460:                           ENDIF
  461: 
  462:                           IF( TTYPE.EQ.2 ) THEN
  463:                               COLPT      = (MYID/2)*KD + SWEEPID
  464:                               STIND      = COLPT-KD+1
  465:                               EDIND      = MIN(COLPT,N)
  466:                               BLKLASTIND = COLPT
  467:                           ELSE
  468:                               COLPT      = ((MYID+1)/2)*KD + SWEEPID
  469:                               STIND      = COLPT-KD+1
  470:                               EDIND      = MIN(COLPT,N)
  471:                               IF( ( STIND.GE.EDIND-1 ).AND.
  472:      $                            ( EDIND.EQ.N ) ) THEN
  473:                                   BLKLASTIND = N
  474:                               ELSE
  475:                                   BLKLASTIND = 0
  476:                               ENDIF
  477:                           ENDIF
  478: *
  479: *                         Call the kernel
  480: *                             
  481: #if defined(_OPENMP) &&  _OPENMP >= 201307
  482:                           IF( TTYPE.NE.1 ) THEN      
  483: !$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
  484: !$OMP$     DEPEND(in:WORK(MYID-1))
  485: !$OMP$     DEPEND(out:WORK(MYID))
  486:                               TID      = OMP_GET_THREAD_NUM()
  487:                               CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, 
  488:      $                             STIND, EDIND, SWEEPID, N, KD, IB,
  489:      $                             WORK ( INDA ), LDA, 
  490:      $                             HOUS( INDV ), HOUS( INDTAU ), LDV,
  491:      $                             WORK( INDW + TID*KD ) )
  492: !$OMP END TASK
  493:                           ELSE
  494: !$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
  495: !$OMP$     DEPEND(out:WORK(MYID))
  496:                               TID      = OMP_GET_THREAD_NUM()
  497:                               CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, 
  498:      $                             STIND, EDIND, SWEEPID, N, KD, IB,
  499:      $                             WORK ( INDA ), LDA, 
  500:      $                             HOUS( INDV ), HOUS( INDTAU ), LDV,
  501:      $                             WORK( INDW + TID*KD ) )
  502: !$OMP END TASK
  503:                           ENDIF
  504: #else
  505:                           CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, 
  506:      $                         STIND, EDIND, SWEEPID, N, KD, IB,
  507:      $                         WORK ( INDA ), LDA, 
  508:      $                         HOUS( INDV ), HOUS( INDTAU ), LDV,
  509:      $                         WORK( INDW + TID*KD ) )
  510: #endif 
  511:                           IF ( BLKLASTIND.GE.(N-1) ) THEN
  512:                               STT = STT + 1
  513:                               EXIT
  514:                           ENDIF
  515:   140                 CONTINUE
  516:   130             CONTINUE
  517:   120         CONTINUE
  518:   110     CONTINUE
  519:   100 CONTINUE
  520: *
  521: #if defined(_OPENMP)
  522: !$OMP END MASTER
  523: !$OMP END PARALLEL
  524: #endif
  525: *      
  526: *     Copy the diagonal from A to D. Note that D is REAL thus only
  527: *     the Real part is needed, the imaginary part should be zero.
  528: *
  529:       DO 150 I = 1, N
  530:           D( I ) = ( WORK( DPOS+(I-1)*LDA ) )
  531:   150 CONTINUE
  532: *      
  533: *     Copy the off diagonal from A to E. Note that E is REAL thus only
  534: *     the Real part is needed, the imaginary part should be zero.
  535: *
  536:       IF( UPPER ) THEN
  537:           DO 160 I = 1, N-1
  538:              E( I ) = ( WORK( OFDPOS+I*LDA ) )
  539:   160     CONTINUE
  540:       ELSE
  541:           DO 170 I = 1, N-1
  542:              E( I ) = ( WORK( OFDPOS+(I-1)*LDA ) )
  543:   170     CONTINUE
  544:       ENDIF
  545: *
  546:       HOUS( 1 ) = LHMIN
  547:       WORK( 1 ) = LWMIN
  548:       RETURN
  549: *
  550: *     End of DSYTRD_SB2ST
  551: *
  552:       END
  553:       

CVSweb interface <joel.bertrand@systella.fr>