Annotation of rpl/lapack/lapack/dsytrd_2stage.f, revision 1.3

1.1       bertrand    1: *> \brief \b DSYTRD_2STAGE
                      2: *
                      3: *  @generated from zhetrd_2stage.f, fortran z -> d, Sun Nov  6 19:34:06 2016
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at 
                      8: *            http://www.netlib.org/lapack/explore-html/ 
                      9: *
                     10: *> \htmlonly
                     11: *> Download DSYTRD_2STAGE + dependencies 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrd_2stage.f"> 
                     13: *> [TGZ]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrd_2stage.f"> 
                     15: *> [ZIP]</a> 
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrd_2stage.f"> 
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly 
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, 
                     24: *                                 HOUS2, LHOUS2, WORK, LWORK, INFO )
                     25: *
                     26: *       IMPLICIT NONE
                     27: *
                     28: *      .. Scalar Arguments ..
                     29: *       CHARACTER          VECT, UPLO
                     30: *       INTEGER            N, LDA, LWORK, LHOUS2, INFO
                     31: *      ..
                     32: *      .. Array Arguments ..
                     33: *       DOUBLE PRECISION   D( * ), E( * )
                     34: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ),
                     35: *                          HOUS2( * ), WORK( * )
                     36: *       ..
                     37: *  
                     38: *
                     39: *> \par Purpose:
                     40: *  =============
                     41: *>
                     42: *> \verbatim
                     43: *>
                     44: *> DSYTRD_2STAGE reduces a real symmetric matrix A to real symmetric
                     45: *> tridiagonal form T by a orthogonal similarity transformation:
                     46: *> Q1**T Q2**T* A * Q2 * Q1 = T.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] VECT
                     53: *> \verbatim
                     54: *>          VECT is CHARACTER*1
                     55: *>          = 'N':  No need for the Housholder representation, 
                     56: *>                  in particular for the second stage (Band to
                     57: *>                  tridiagonal) and thus LHOUS2 is of size max(1, 4*N);
                     58: *>          = 'V':  the Householder representation is needed to 
                     59: *>                  either generate Q1 Q2 or to apply Q1 Q2, 
                     60: *>                  then LHOUS2 is to be queried and computed.
                     61: *>                  (NOT AVAILABLE IN THIS RELEASE).
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] UPLO
                     65: *> \verbatim
                     66: *>          UPLO is CHARACTER*1
                     67: *>          = 'U':  Upper triangle of A is stored;
                     68: *>          = 'L':  Lower triangle of A is stored.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] N
                     72: *> \verbatim
                     73: *>          N is INTEGER
                     74: *>          The order of the matrix A.  N >= 0.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in,out] A
                     78: *> \verbatim
                     79: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     80: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     81: *>          N-by-N upper triangular part of A contains the upper
                     82: *>          triangular part of the matrix A, and the strictly lower
                     83: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     84: *>          leading N-by-N lower triangular part of A contains the lower
                     85: *>          triangular part of the matrix A, and the strictly upper
                     86: *>          triangular part of A is not referenced.
                     87: *>          On exit, if UPLO = 'U', the band superdiagonal
                     88: *>          of A are overwritten by the corresponding elements of the
                     89: *>          internal band-diagonal matrix AB, and the elements above 
                     90: *>          the KD superdiagonal, with the array TAU, represent the orthogonal
                     91: *>          matrix Q1 as a product of elementary reflectors; if UPLO
                     92: *>          = 'L', the diagonal and band subdiagonal of A are over-
                     93: *>          written by the corresponding elements of the internal band-diagonal
                     94: *>          matrix AB, and the elements below the KD subdiagonal, with
                     95: *>          the array TAU, represent the orthogonal matrix Q1 as a product
                     96: *>          of elementary reflectors. See Further Details.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LDA
                    100: *> \verbatim
                    101: *>          LDA is INTEGER
                    102: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[out] D
                    106: *> \verbatim
                    107: *>          D is DOUBLE PRECISION array, dimension (N)
                    108: *>          The diagonal elements of the tridiagonal matrix T.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[out] E
                    112: *> \verbatim
                    113: *>          E is DOUBLE PRECISION array, dimension (N-1)
                    114: *>          The off-diagonal elements of the tridiagonal matrix T.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[out] TAU
                    118: *> \verbatim
                    119: *>          TAU is DOUBLE PRECISION array, dimension (N-KD)
                    120: *>          The scalar factors of the elementary reflectors of 
                    121: *>          the first stage (see Further Details).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] HOUS2
                    125: *> \verbatim
                    126: *>          HOUS2 is DOUBLE PRECISION array, dimension LHOUS2, that
                    127: *>          store the Householder representation of the stage2
                    128: *>          band to tridiagonal.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] LHOUS2
                    132: *> \verbatim
                    133: *>          LHOUS2 is INTEGER
                    134: *>          The dimension of the array HOUS2. LHOUS2 = MAX(1, dimension)
                    135: *>          If LWORK = -1, or LHOUS2=-1,
                    136: *>          then a query is assumed; the routine
                    137: *>          only calculates the optimal size of the HOUS2 array, returns
                    138: *>          this value as the first entry of the HOUS2 array, and no error
                    139: *>          message related to LHOUS2 is issued by XERBLA.
                    140: *>          LHOUS2 = MAX(1, dimension) where
                    141: *>          dimension = 4*N if VECT='N'
                    142: *>          not available now if VECT='H'
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[out] WORK
                    146: *> \verbatim
1.3     ! bertrand  147: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
1.1       bertrand  148: *> \endverbatim
                    149: *>
                    150: *> \param[in] LWORK
                    151: *> \verbatim
                    152: *>          LWORK is INTEGER
                    153: *>          The dimension of the array WORK. LWORK = MAX(1, dimension)
                    154: *>          If LWORK = -1, or LHOUS2=-1,
                    155: *>          then a workspace query is assumed; the routine
                    156: *>          only calculates the optimal size of the WORK array, returns
                    157: *>          this value as the first entry of the WORK array, and no error
                    158: *>          message related to LWORK is issued by XERBLA.
                    159: *>          LWORK = MAX(1, dimension) where
                    160: *>          dimension   = max(stage1,stage2) + (KD+1)*N
                    161: *>                      = N*KD + N*max(KD+1,FACTOPTNB) 
                    162: *>                        + max(2*KD*KD, KD*NTHREADS) 
                    163: *>                        + (KD+1)*N 
                    164: *>          where KD is the blocking size of the reduction,
                    165: *>          FACTOPTNB is the blocking used by the QR or LQ
                    166: *>          algorithm, usually FACTOPTNB=128 is a good choice
                    167: *>          NTHREADS is the number of threads used when
                    168: *>          openMP compilation is enabled, otherwise =1.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[out] INFO
                    172: *> \verbatim
                    173: *>          INFO is INTEGER
                    174: *>          = 0:  successful exit
                    175: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    176: *> \endverbatim
                    177: *
                    178: *  Authors:
                    179: *  ========
                    180: *
                    181: *> \author Univ. of Tennessee 
                    182: *> \author Univ. of California Berkeley 
                    183: *> \author Univ. of Colorado Denver 
                    184: *> \author NAG Ltd. 
                    185: *
1.3     ! bertrand  186: *> \date November 2017
1.1       bertrand  187: *
                    188: *> \ingroup doubleSYcomputational
                    189: *
                    190: *> \par Further Details:
                    191: *  =====================
                    192: *>
                    193: *> \verbatim
                    194: *>
                    195: *>  Implemented by Azzam Haidar.
                    196: *>
                    197: *>  All details are available on technical report, SC11, SC13 papers.
                    198: *>
                    199: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    200: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    201: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    202: *>  of 2011 International Conference for High Performance Computing,
                    203: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    204: *>  Article 8 , 11 pages.
                    205: *>  http://doi.acm.org/10.1145/2063384.2063394
                    206: *>
                    207: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    208: *>  An improved parallel singular value algorithm and its implementation 
                    209: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    210: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    211: *>  Denver, Colorado, USA, 2013.
                    212: *>  Article 90, 12 pages.
                    213: *>  http://doi.acm.org/10.1145/2503210.2503292
                    214: *>
                    215: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    216: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    217: *>  calculations based on fine-grained memory aware tasks.
                    218: *>  International Journal of High Performance Computing Applications.
                    219: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    220: *>  http://hpc.sagepub.com/content/28/2/196 
                    221: *>
                    222: *> \endverbatim
                    223: *>
                    224: *  =====================================================================
                    225:       SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, 
                    226:      $                          HOUS2, LHOUS2, WORK, LWORK, INFO )
                    227: *
                    228:       IMPLICIT NONE
                    229: *
1.3     ! bertrand  230: *  -- LAPACK computational routine (version 3.8.0) --
1.1       bertrand  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.3     ! bertrand  233: *     November 2017
1.1       bertrand  234: *
                    235: *     .. Scalar Arguments ..
                    236:       CHARACTER          VECT, UPLO
                    237:       INTEGER            N, LDA, LWORK, LHOUS2, INFO
                    238: *     ..
                    239: *     .. Array Arguments ..
                    240:       DOUBLE PRECISION   D( * ), E( * )
                    241:       DOUBLE PRECISION   A( LDA, * ), TAU( * ),
                    242:      $                   HOUS2( * ), WORK( * )
                    243: *     ..
                    244: *
                    245: *  =====================================================================
                    246: *     ..
                    247: *     .. Local Scalars ..
                    248:       LOGICAL            LQUERY, UPPER, WANTQ
                    249:       INTEGER            KD, IB, LWMIN, LHMIN, LWRK, LDAB, WPOS, ABPOS
                    250: *     ..
                    251: *     .. External Subroutines ..
                    252:       EXTERNAL           XERBLA, DSYTRD_SY2SB, DSYTRD_SB2ST
                    253: *     ..
                    254: *     .. External Functions ..
                    255:       LOGICAL            LSAME
1.3     ! bertrand  256:       INTEGER            ILAENV2STAGE
        !           257:       EXTERNAL           LSAME, ILAENV2STAGE
1.1       bertrand  258: *     ..
                    259: *     .. Executable Statements ..
                    260: *
                    261: *     Test the input parameters
                    262: *
                    263:       INFO   = 0
                    264:       WANTQ  = LSAME( VECT, 'V' )
                    265:       UPPER  = LSAME( UPLO, 'U' )
                    266:       LQUERY = ( LWORK.EQ.-1 ) .OR. ( LHOUS2.EQ.-1 )
                    267: *
                    268: *     Determine the block size, the workspace size and the hous size.
                    269: *
1.3     ! bertrand  270:       KD     = ILAENV2STAGE( 1, 'DSYTRD_2STAGE', VECT, N, -1, -1, -1 )
        !           271:       IB     = ILAENV2STAGE( 2, 'DSYTRD_2STAGE', VECT, N, KD, -1, -1 )
        !           272:       LHMIN  = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', VECT, N, KD, IB, -1 )
        !           273:       LWMIN  = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', VECT, N, KD, IB, -1 )
1.1       bertrand  274: *      WRITE(*,*),'DSYTRD_2STAGE N KD UPLO LHMIN LWMIN ',N, KD, UPLO,
                    275: *     $            LHMIN, LWMIN
                    276: *
                    277:       IF( .NOT.LSAME( VECT, 'N' ) ) THEN
                    278:          INFO = -1
                    279:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    280:          INFO = -2
                    281:       ELSE IF( N.LT.0 ) THEN
                    282:          INFO = -3
                    283:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    284:          INFO = -5
                    285:       ELSE IF( LHOUS2.LT.LHMIN .AND. .NOT.LQUERY ) THEN
                    286:          INFO = -10
                    287:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    288:          INFO = -12
                    289:       END IF
                    290: *
                    291:       IF( INFO.EQ.0 ) THEN
                    292:          HOUS2( 1 ) = LHMIN
                    293:          WORK( 1 )  = LWMIN
                    294:       END IF
                    295: *
                    296:       IF( INFO.NE.0 ) THEN
                    297:          CALL XERBLA( 'DSYTRD_2STAGE', -INFO )
                    298:          RETURN
                    299:       ELSE IF( LQUERY ) THEN
                    300:          RETURN
                    301:       END IF
                    302: *
                    303: *     Quick return if possible
                    304: *
                    305:       IF( N.EQ.0 ) THEN
                    306:          WORK( 1 ) = 1
                    307:          RETURN
                    308:       END IF
                    309: *
                    310: *     Determine pointer position
                    311: *
                    312:       LDAB  = KD+1
                    313:       LWRK  = LWORK-LDAB*N
                    314:       ABPOS = 1
                    315:       WPOS  = ABPOS + LDAB*N
                    316:       CALL DSYTRD_SY2SB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, 
                    317:      $                   TAU, WORK( WPOS ), LWRK, INFO )
                    318:       IF( INFO.NE.0 ) THEN
                    319:          CALL XERBLA( 'DSYTRD_SY2SB', -INFO )
                    320:          RETURN
                    321:       END IF
                    322:       CALL DSYTRD_SB2ST( 'Y', VECT, UPLO, N, KD, 
                    323:      $                   WORK( ABPOS ), LDAB, D, E, 
                    324:      $                   HOUS2, LHOUS2, WORK( WPOS ), LWRK, INFO )
                    325:       IF( INFO.NE.0 ) THEN
                    326:          CALL XERBLA( 'DSYTRD_SB2ST', -INFO )
                    327:          RETURN
                    328:       END IF
                    329: *
                    330: *
                    331:       HOUS2( 1 ) = LHMIN
                    332:       WORK( 1 )  = LWMIN
                    333:       RETURN
                    334: *
                    335: *     End of DSYTRD_2STAGE
                    336: *
                    337:       END

CVSweb interface <joel.bertrand@systella.fr>