Annotation of rpl/lapack/lapack/dsytrd_2stage.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b DSYTRD_2STAGE
        !             2: *
        !             3: *  @generated from zhetrd_2stage.f, fortran z -> d, Sun Nov  6 19:34:06 2016
        !             4: *
        !             5: *  =========== DOCUMENTATION ===========
        !             6: *
        !             7: * Online html documentation available at 
        !             8: *            http://www.netlib.org/lapack/explore-html/ 
        !             9: *
        !            10: *> \htmlonly
        !            11: *> Download DSYTRD_2STAGE + dependencies 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrd_2stage.f"> 
        !            13: *> [TGZ]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrd_2stage.f"> 
        !            15: *> [ZIP]</a> 
        !            16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrd_2stage.f"> 
        !            17: *> [TXT]</a>
        !            18: *> \endhtmlonly 
        !            19: *
        !            20: *  Definition:
        !            21: *  ===========
        !            22: *
        !            23: *       SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, 
        !            24: *                                 HOUS2, LHOUS2, WORK, LWORK, INFO )
        !            25: *
        !            26: *       IMPLICIT NONE
        !            27: *
        !            28: *      .. Scalar Arguments ..
        !            29: *       CHARACTER          VECT, UPLO
        !            30: *       INTEGER            N, LDA, LWORK, LHOUS2, INFO
        !            31: *      ..
        !            32: *      .. Array Arguments ..
        !            33: *       DOUBLE PRECISION   D( * ), E( * )
        !            34: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ),
        !            35: *                          HOUS2( * ), WORK( * )
        !            36: *       ..
        !            37: *  
        !            38: *
        !            39: *> \par Purpose:
        !            40: *  =============
        !            41: *>
        !            42: *> \verbatim
        !            43: *>
        !            44: *> DSYTRD_2STAGE reduces a real symmetric matrix A to real symmetric
        !            45: *> tridiagonal form T by a orthogonal similarity transformation:
        !            46: *> Q1**T Q2**T* A * Q2 * Q1 = T.
        !            47: *> \endverbatim
        !            48: *
        !            49: *  Arguments:
        !            50: *  ==========
        !            51: *
        !            52: *> \param[in] VECT
        !            53: *> \verbatim
        !            54: *>          VECT is CHARACTER*1
        !            55: *>          = 'N':  No need for the Housholder representation, 
        !            56: *>                  in particular for the second stage (Band to
        !            57: *>                  tridiagonal) and thus LHOUS2 is of size max(1, 4*N);
        !            58: *>          = 'V':  the Householder representation is needed to 
        !            59: *>                  either generate Q1 Q2 or to apply Q1 Q2, 
        !            60: *>                  then LHOUS2 is to be queried and computed.
        !            61: *>                  (NOT AVAILABLE IN THIS RELEASE).
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] UPLO
        !            65: *> \verbatim
        !            66: *>          UPLO is CHARACTER*1
        !            67: *>          = 'U':  Upper triangle of A is stored;
        !            68: *>          = 'L':  Lower triangle of A is stored.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] N
        !            72: *> \verbatim
        !            73: *>          N is INTEGER
        !            74: *>          The order of the matrix A.  N >= 0.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in,out] A
        !            78: *> \verbatim
        !            79: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            80: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
        !            81: *>          N-by-N upper triangular part of A contains the upper
        !            82: *>          triangular part of the matrix A, and the strictly lower
        !            83: *>          triangular part of A is not referenced.  If UPLO = 'L', the
        !            84: *>          leading N-by-N lower triangular part of A contains the lower
        !            85: *>          triangular part of the matrix A, and the strictly upper
        !            86: *>          triangular part of A is not referenced.
        !            87: *>          On exit, if UPLO = 'U', the band superdiagonal
        !            88: *>          of A are overwritten by the corresponding elements of the
        !            89: *>          internal band-diagonal matrix AB, and the elements above 
        !            90: *>          the KD superdiagonal, with the array TAU, represent the orthogonal
        !            91: *>          matrix Q1 as a product of elementary reflectors; if UPLO
        !            92: *>          = 'L', the diagonal and band subdiagonal of A are over-
        !            93: *>          written by the corresponding elements of the internal band-diagonal
        !            94: *>          matrix AB, and the elements below the KD subdiagonal, with
        !            95: *>          the array TAU, represent the orthogonal matrix Q1 as a product
        !            96: *>          of elementary reflectors. See Further Details.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] LDA
        !           100: *> \verbatim
        !           101: *>          LDA is INTEGER
        !           102: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[out] D
        !           106: *> \verbatim
        !           107: *>          D is DOUBLE PRECISION array, dimension (N)
        !           108: *>          The diagonal elements of the tridiagonal matrix T.
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[out] E
        !           112: *> \verbatim
        !           113: *>          E is DOUBLE PRECISION array, dimension (N-1)
        !           114: *>          The off-diagonal elements of the tridiagonal matrix T.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[out] TAU
        !           118: *> \verbatim
        !           119: *>          TAU is DOUBLE PRECISION array, dimension (N-KD)
        !           120: *>          The scalar factors of the elementary reflectors of 
        !           121: *>          the first stage (see Further Details).
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[out] HOUS2
        !           125: *> \verbatim
        !           126: *>          HOUS2 is DOUBLE PRECISION array, dimension LHOUS2, that
        !           127: *>          store the Householder representation of the stage2
        !           128: *>          band to tridiagonal.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] LHOUS2
        !           132: *> \verbatim
        !           133: *>          LHOUS2 is INTEGER
        !           134: *>          The dimension of the array HOUS2. LHOUS2 = MAX(1, dimension)
        !           135: *>          If LWORK = -1, or LHOUS2=-1,
        !           136: *>          then a query is assumed; the routine
        !           137: *>          only calculates the optimal size of the HOUS2 array, returns
        !           138: *>          this value as the first entry of the HOUS2 array, and no error
        !           139: *>          message related to LHOUS2 is issued by XERBLA.
        !           140: *>          LHOUS2 = MAX(1, dimension) where
        !           141: *>          dimension = 4*N if VECT='N'
        !           142: *>          not available now if VECT='H'
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[out] WORK
        !           146: *> \verbatim
        !           147: *>          WORK is DOUBLE PRECISION array, dimension LWORK.
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[in] LWORK
        !           151: *> \verbatim
        !           152: *>          LWORK is INTEGER
        !           153: *>          The dimension of the array WORK. LWORK = MAX(1, dimension)
        !           154: *>          If LWORK = -1, or LHOUS2=-1,
        !           155: *>          then a workspace query is assumed; the routine
        !           156: *>          only calculates the optimal size of the WORK array, returns
        !           157: *>          this value as the first entry of the WORK array, and no error
        !           158: *>          message related to LWORK is issued by XERBLA.
        !           159: *>          LWORK = MAX(1, dimension) where
        !           160: *>          dimension   = max(stage1,stage2) + (KD+1)*N
        !           161: *>                      = N*KD + N*max(KD+1,FACTOPTNB) 
        !           162: *>                        + max(2*KD*KD, KD*NTHREADS) 
        !           163: *>                        + (KD+1)*N 
        !           164: *>          where KD is the blocking size of the reduction,
        !           165: *>          FACTOPTNB is the blocking used by the QR or LQ
        !           166: *>          algorithm, usually FACTOPTNB=128 is a good choice
        !           167: *>          NTHREADS is the number of threads used when
        !           168: *>          openMP compilation is enabled, otherwise =1.
        !           169: *> \endverbatim
        !           170: *>
        !           171: *> \param[out] INFO
        !           172: *> \verbatim
        !           173: *>          INFO is INTEGER
        !           174: *>          = 0:  successful exit
        !           175: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           176: *> \endverbatim
        !           177: *
        !           178: *  Authors:
        !           179: *  ========
        !           180: *
        !           181: *> \author Univ. of Tennessee 
        !           182: *> \author Univ. of California Berkeley 
        !           183: *> \author Univ. of Colorado Denver 
        !           184: *> \author NAG Ltd. 
        !           185: *
        !           186: *> \date December 2016
        !           187: *
        !           188: *> \ingroup doubleSYcomputational
        !           189: *
        !           190: *> \par Further Details:
        !           191: *  =====================
        !           192: *>
        !           193: *> \verbatim
        !           194: *>
        !           195: *>  Implemented by Azzam Haidar.
        !           196: *>
        !           197: *>  All details are available on technical report, SC11, SC13 papers.
        !           198: *>
        !           199: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
        !           200: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
        !           201: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
        !           202: *>  of 2011 International Conference for High Performance Computing,
        !           203: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
        !           204: *>  Article 8 , 11 pages.
        !           205: *>  http://doi.acm.org/10.1145/2063384.2063394
        !           206: *>
        !           207: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
        !           208: *>  An improved parallel singular value algorithm and its implementation 
        !           209: *>  for multicore hardware, In Proceedings of 2013 International Conference
        !           210: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
        !           211: *>  Denver, Colorado, USA, 2013.
        !           212: *>  Article 90, 12 pages.
        !           213: *>  http://doi.acm.org/10.1145/2503210.2503292
        !           214: *>
        !           215: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
        !           216: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
        !           217: *>  calculations based on fine-grained memory aware tasks.
        !           218: *>  International Journal of High Performance Computing Applications.
        !           219: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
        !           220: *>  http://hpc.sagepub.com/content/28/2/196 
        !           221: *>
        !           222: *> \endverbatim
        !           223: *>
        !           224: *  =====================================================================
        !           225:       SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, 
        !           226:      $                          HOUS2, LHOUS2, WORK, LWORK, INFO )
        !           227: *
        !           228:       IMPLICIT NONE
        !           229: *
        !           230: *  -- LAPACK computational routine (version 3.7.0) --
        !           231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           233: *     December 2016
        !           234: *
        !           235: *     .. Scalar Arguments ..
        !           236:       CHARACTER          VECT, UPLO
        !           237:       INTEGER            N, LDA, LWORK, LHOUS2, INFO
        !           238: *     ..
        !           239: *     .. Array Arguments ..
        !           240:       DOUBLE PRECISION   D( * ), E( * )
        !           241:       DOUBLE PRECISION   A( LDA, * ), TAU( * ),
        !           242:      $                   HOUS2( * ), WORK( * )
        !           243: *     ..
        !           244: *
        !           245: *  =====================================================================
        !           246: *     ..
        !           247: *     .. Local Scalars ..
        !           248:       LOGICAL            LQUERY, UPPER, WANTQ
        !           249:       INTEGER            KD, IB, LWMIN, LHMIN, LWRK, LDAB, WPOS, ABPOS
        !           250: *     ..
        !           251: *     .. External Subroutines ..
        !           252:       EXTERNAL           XERBLA, DSYTRD_SY2SB, DSYTRD_SB2ST
        !           253: *     ..
        !           254: *     .. External Functions ..
        !           255:       LOGICAL            LSAME
        !           256:       INTEGER            ILAENV
        !           257:       EXTERNAL           LSAME, ILAENV
        !           258: *     ..
        !           259: *     .. Executable Statements ..
        !           260: *
        !           261: *     Test the input parameters
        !           262: *
        !           263:       INFO   = 0
        !           264:       WANTQ  = LSAME( VECT, 'V' )
        !           265:       UPPER  = LSAME( UPLO, 'U' )
        !           266:       LQUERY = ( LWORK.EQ.-1 ) .OR. ( LHOUS2.EQ.-1 )
        !           267: *
        !           268: *     Determine the block size, the workspace size and the hous size.
        !           269: *
        !           270:       KD     = ILAENV( 17, 'DSYTRD_2STAGE', VECT, N, -1, -1, -1 )
        !           271:       IB     = ILAENV( 18, 'DSYTRD_2STAGE', VECT, N, KD, -1, -1 )
        !           272:       LHMIN  = ILAENV( 19, 'DSYTRD_2STAGE', VECT, N, KD, IB, -1 )
        !           273:       LWMIN  = ILAENV( 20, 'DSYTRD_2STAGE', VECT, N, KD, IB, -1 )
        !           274: *      WRITE(*,*),'DSYTRD_2STAGE N KD UPLO LHMIN LWMIN ',N, KD, UPLO,
        !           275: *     $            LHMIN, LWMIN
        !           276: *
        !           277:       IF( .NOT.LSAME( VECT, 'N' ) ) THEN
        !           278:          INFO = -1
        !           279:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           280:          INFO = -2
        !           281:       ELSE IF( N.LT.0 ) THEN
        !           282:          INFO = -3
        !           283:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           284:          INFO = -5
        !           285:       ELSE IF( LHOUS2.LT.LHMIN .AND. .NOT.LQUERY ) THEN
        !           286:          INFO = -10
        !           287:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           288:          INFO = -12
        !           289:       END IF
        !           290: *
        !           291:       IF( INFO.EQ.0 ) THEN
        !           292:          HOUS2( 1 ) = LHMIN
        !           293:          WORK( 1 )  = LWMIN
        !           294:       END IF
        !           295: *
        !           296:       IF( INFO.NE.0 ) THEN
        !           297:          CALL XERBLA( 'DSYTRD_2STAGE', -INFO )
        !           298:          RETURN
        !           299:       ELSE IF( LQUERY ) THEN
        !           300:          RETURN
        !           301:       END IF
        !           302: *
        !           303: *     Quick return if possible
        !           304: *
        !           305:       IF( N.EQ.0 ) THEN
        !           306:          WORK( 1 ) = 1
        !           307:          RETURN
        !           308:       END IF
        !           309: *
        !           310: *     Determine pointer position
        !           311: *
        !           312:       LDAB  = KD+1
        !           313:       LWRK  = LWORK-LDAB*N
        !           314:       ABPOS = 1
        !           315:       WPOS  = ABPOS + LDAB*N
        !           316:       CALL DSYTRD_SY2SB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, 
        !           317:      $                   TAU, WORK( WPOS ), LWRK, INFO )
        !           318:       IF( INFO.NE.0 ) THEN
        !           319:          CALL XERBLA( 'DSYTRD_SY2SB', -INFO )
        !           320:          RETURN
        !           321:       END IF
        !           322:       CALL DSYTRD_SB2ST( 'Y', VECT, UPLO, N, KD, 
        !           323:      $                   WORK( ABPOS ), LDAB, D, E, 
        !           324:      $                   HOUS2, LHOUS2, WORK( WPOS ), LWRK, INFO )
        !           325:       IF( INFO.NE.0 ) THEN
        !           326:          CALL XERBLA( 'DSYTRD_SB2ST', -INFO )
        !           327:          RETURN
        !           328:       END IF
        !           329: *
        !           330: *
        !           331:       HOUS2( 1 ) = LHMIN
        !           332:       WORK( 1 )  = LWMIN
        !           333:       RETURN
        !           334: *
        !           335: *     End of DSYTRD_2STAGE
        !           336: *
        !           337:       END

CVSweb interface <joel.bertrand@systella.fr>