File:  [local] / rpl / lapack / lapack / dsytf2_rook.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:10 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTF2_ROOK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTF2_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYTF2_ROOK computes the factorization of a real symmetric matrix A
   39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**T  or  A = L*D*L**T
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, U**T is the transpose of U, and D is symmetric and
   45: *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          symmetric matrix A is stored:
   58: *>          = 'U':  Upper triangular
   59: *>          = 'L':  Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   71: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   72: *>          n-by-n upper triangular part of A contains the upper
   73: *>          triangular part of the matrix A, and the strictly lower
   74: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *>          leading n-by-n lower triangular part of A contains the lower
   76: *>          triangular part of the matrix A, and the strictly upper
   77: *>          triangular part of A is not referenced.
   78: *>
   79: *>          On exit, the block diagonal matrix D and the multipliers used
   80: *>          to obtain the factor U or L (see below for further details).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D.
   93: *>
   94: *>          If UPLO = 'U':
   95: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
   96: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
   97: *>
   98: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
   99: *>             columns k and -IPIV(k) were interchanged and rows and
  100: *>             columns k-1 and -IPIV(k-1) were inerchaged,
  101: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  102: *>
  103: *>          If UPLO = 'L':
  104: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
  105: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
  106: *>
  107: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  108: *>             columns k and -IPIV(k) were interchanged and rows and
  109: *>             columns k+1 and -IPIV(k+1) were inerchaged,
  110: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0: successful exit
  117: *>          < 0: if INFO = -k, the k-th argument had an illegal value
  118: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  119: *>               has been completed, but the block diagonal matrix D is
  120: *>               exactly singular, and division by zero will occur if it
  121: *>               is used to solve a system of equations.
  122: *> \endverbatim
  123: *
  124: *  Authors:
  125: *  ========
  126: *
  127: *> \author Univ. of Tennessee
  128: *> \author Univ. of California Berkeley
  129: *> \author Univ. of Colorado Denver
  130: *> \author NAG Ltd.
  131: *
  132: *> \ingroup doubleSYcomputational
  133: *
  134: *> \par Further Details:
  135: *  =====================
  136: *>
  137: *> \verbatim
  138: *>
  139: *>  If UPLO = 'U', then A = U*D*U**T, where
  140: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  141: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  142: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  143: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  144: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  145: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  146: *>
  147: *>             (   I    v    0   )   k-s
  148: *>     U(k) =  (   0    I    0   )   s
  149: *>             (   0    0    I   )   n-k
  150: *>                k-s   s   n-k
  151: *>
  152: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  153: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  154: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  155: *>
  156: *>  If UPLO = 'L', then A = L*D*L**T, where
  157: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  158: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  159: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  160: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  161: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  162: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  163: *>
  164: *>             (   I    0     0   )  k-1
  165: *>     L(k) =  (   0    I     0   )  s
  166: *>             (   0    v     I   )  n-k-s+1
  167: *>                k-1   s  n-k-s+1
  168: *>
  169: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  170: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  171: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  172: *> \endverbatim
  173: *
  174: *> \par Contributors:
  175: *  ==================
  176: *>
  177: *> \verbatim
  178: *>
  179: *>  November 2013,     Igor Kozachenko,
  180: *>                  Computer Science Division,
  181: *>                  University of California, Berkeley
  182: *>
  183: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  184: *>                  School of Mathematics,
  185: *>                  University of Manchester
  186: *>
  187: *>  01-01-96 - Based on modifications by
  188: *>    J. Lewis, Boeing Computer Services Company
  189: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville abd , USA
  190: *> \endverbatim
  191: *
  192: *  =====================================================================
  193:       SUBROUTINE DSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
  194: *
  195: *  -- LAPACK computational routine --
  196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198: *
  199: *     .. Scalar Arguments ..
  200:       CHARACTER          UPLO
  201:       INTEGER            INFO, LDA, N
  202: *     ..
  203: *     .. Array Arguments ..
  204:       INTEGER            IPIV( * )
  205:       DOUBLE PRECISION   A( LDA, * )
  206: *     ..
  207: *
  208: *  =====================================================================
  209: *
  210: *     .. Parameters ..
  211:       DOUBLE PRECISION   ZERO, ONE
  212:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  213:       DOUBLE PRECISION   EIGHT, SEVTEN
  214:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  215: *     ..
  216: *     .. Local Scalars ..
  217:       LOGICAL            UPPER, DONE
  218:       INTEGER            I, IMAX, J, JMAX, ITEMP, K, KK, KP, KSTEP,
  219:      $                   P, II
  220:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
  221:      $                   ROWMAX, DTEMP, T, WK, WKM1, WKP1, SFMIN
  222: *     ..
  223: *     .. External Functions ..
  224:       LOGICAL            LSAME
  225:       INTEGER            IDAMAX
  226:       DOUBLE PRECISION   DLAMCH
  227:       EXTERNAL           LSAME, IDAMAX, DLAMCH
  228: *     ..
  229: *     .. External Subroutines ..
  230:       EXTERNAL           DSCAL, DSWAP, DSYR, XERBLA
  231: *     ..
  232: *     .. Intrinsic Functions ..
  233:       INTRINSIC          ABS, MAX, SQRT
  234: *     ..
  235: *     .. Executable Statements ..
  236: *
  237: *     Test the input parameters.
  238: *
  239:       INFO = 0
  240:       UPPER = LSAME( UPLO, 'U' )
  241:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  242:          INFO = -1
  243:       ELSE IF( N.LT.0 ) THEN
  244:          INFO = -2
  245:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  246:          INFO = -4
  247:       END IF
  248:       IF( INFO.NE.0 ) THEN
  249:          CALL XERBLA( 'DSYTF2_ROOK', -INFO )
  250:          RETURN
  251:       END IF
  252: *
  253: *     Initialize ALPHA for use in choosing pivot block size.
  254: *
  255:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  256: *
  257: *     Compute machine safe minimum
  258: *
  259:       SFMIN = DLAMCH( 'S' )
  260: *
  261:       IF( UPPER ) THEN
  262: *
  263: *        Factorize A as U*D*U**T using the upper triangle of A
  264: *
  265: *        K is the main loop index, decreasing from N to 1 in steps of
  266: *        1 or 2
  267: *
  268:          K = N
  269:    10    CONTINUE
  270: *
  271: *        If K < 1, exit from loop
  272: *
  273:          IF( K.LT.1 )
  274:      $      GO TO 70
  275:          KSTEP = 1
  276:          P = K
  277: *
  278: *        Determine rows and columns to be interchanged and whether
  279: *        a 1-by-1 or 2-by-2 pivot block will be used
  280: *
  281:          ABSAKK = ABS( A( K, K ) )
  282: *
  283: *        IMAX is the row-index of the largest off-diagonal element in
  284: *        column K, and COLMAX is its absolute value.
  285: *        Determine both COLMAX and IMAX.
  286: *
  287:          IF( K.GT.1 ) THEN
  288:             IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  289:             COLMAX = ABS( A( IMAX, K ) )
  290:          ELSE
  291:             COLMAX = ZERO
  292:          END IF
  293: *
  294:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) ) THEN
  295: *
  296: *           Column K is zero or underflow: set INFO and continue
  297: *
  298:             IF( INFO.EQ.0 )
  299:      $         INFO = K
  300:             KP = K
  301:          ELSE
  302: *
  303: *           Test for interchange
  304: *
  305: *           Equivalent to testing for (used to handle NaN and Inf)
  306: *           ABSAKK.GE.ALPHA*COLMAX
  307: *
  308:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  309: *
  310: *              no interchange,
  311: *              use 1-by-1 pivot block
  312: *
  313:                KP = K
  314:             ELSE
  315: *
  316:                DONE = .FALSE.
  317: *
  318: *              Loop until pivot found
  319: *
  320:    12          CONTINUE
  321: *
  322: *                 Begin pivot search loop body
  323: *
  324: *                 JMAX is the column-index of the largest off-diagonal
  325: *                 element in row IMAX, and ROWMAX is its absolute value.
  326: *                 Determine both ROWMAX and JMAX.
  327: *
  328:                   IF( IMAX.NE.K ) THEN
  329:                      JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ),
  330:      $                                    LDA )
  331:                      ROWMAX = ABS( A( IMAX, JMAX ) )
  332:                   ELSE
  333:                      ROWMAX = ZERO
  334:                   END IF
  335: *
  336:                   IF( IMAX.GT.1 ) THEN
  337:                      ITEMP = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  338:                      DTEMP = ABS( A( ITEMP, IMAX ) )
  339:                      IF( DTEMP.GT.ROWMAX ) THEN
  340:                         ROWMAX = DTEMP
  341:                         JMAX = ITEMP
  342:                      END IF
  343:                   END IF
  344: *
  345: *                 Equivalent to testing for (used to handle NaN and Inf)
  346: *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  347: *
  348:                   IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
  349:      $            THEN
  350: *
  351: *                    interchange rows and columns K and IMAX,
  352: *                    use 1-by-1 pivot block
  353: *
  354:                      KP = IMAX
  355:                      DONE = .TRUE.
  356: *
  357: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  358: *                 used to handle NaN and Inf
  359: *
  360:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  361: *
  362: *                    interchange rows and columns K+1 and IMAX,
  363: *                    use 2-by-2 pivot block
  364: *
  365:                      KP = IMAX
  366:                      KSTEP = 2
  367:                      DONE = .TRUE.
  368:                   ELSE
  369: *
  370: *                    Pivot NOT found, set variables and repeat
  371: *
  372:                      P = IMAX
  373:                      COLMAX = ROWMAX
  374:                      IMAX = JMAX
  375:                   END IF
  376: *
  377: *                 End pivot search loop body
  378: *
  379:                IF( .NOT. DONE ) GOTO 12
  380: *
  381:             END IF
  382: *
  383: *           Swap TWO rows and TWO columns
  384: *
  385: *           First swap
  386: *
  387:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  388: *
  389: *              Interchange rows and column K and P in the leading
  390: *              submatrix A(1:k,1:k) if we have a 2-by-2 pivot
  391: *
  392:                IF( P.GT.1 )
  393:      $            CALL DSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  394:                IF( P.LT.(K-1) )
  395:      $            CALL DSWAP( K-P-1, A( P+1, K ), 1, A( P, P+1 ),
  396:      $                     LDA )
  397:                T = A( K, K )
  398:                A( K, K ) = A( P, P )
  399:                A( P, P ) = T
  400:             END IF
  401: *
  402: *           Second swap
  403: *
  404:             KK = K - KSTEP + 1
  405:             IF( KP.NE.KK ) THEN
  406: *
  407: *              Interchange rows and columns KK and KP in the leading
  408: *              submatrix A(1:k,1:k)
  409: *
  410:                IF( KP.GT.1 )
  411:      $            CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  412:                IF( ( KK.GT.1 ) .AND. ( KP.LT.(KK-1) ) )
  413:      $            CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  414:      $                     LDA )
  415:                T = A( KK, KK )
  416:                A( KK, KK ) = A( KP, KP )
  417:                A( KP, KP ) = T
  418:                IF( KSTEP.EQ.2 ) THEN
  419:                   T = A( K-1, K )
  420:                   A( K-1, K ) = A( KP, K )
  421:                   A( KP, K ) = T
  422:                END IF
  423:             END IF
  424: *
  425: *           Update the leading submatrix
  426: *
  427:             IF( KSTEP.EQ.1 ) THEN
  428: *
  429: *              1-by-1 pivot block D(k): column k now holds
  430: *
  431: *              W(k) = U(k)*D(k)
  432: *
  433: *              where U(k) is the k-th column of U
  434: *
  435:                IF( K.GT.1 ) THEN
  436: *
  437: *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
  438: *                 store U(k) in column k
  439: *
  440:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  441: *
  442: *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
  443: *                    A := A - U(k)*D(k)*U(k)**T
  444: *                       = A - W(k)*1/D(k)*W(k)**T
  445: *
  446:                      D11 = ONE / A( K, K )
  447:                      CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  448: *
  449: *                    Store U(k) in column k
  450: *
  451:                      CALL DSCAL( K-1, D11, A( 1, K ), 1 )
  452:                   ELSE
  453: *
  454: *                    Store L(k) in column K
  455: *
  456:                      D11 = A( K, K )
  457:                      DO 16 II = 1, K - 1
  458:                         A( II, K ) = A( II, K ) / D11
  459:    16                CONTINUE
  460: *
  461: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  462: *                    A := A - U(k)*D(k)*U(k)**T
  463: *                       = A - W(k)*(1/D(k))*W(k)**T
  464: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  465: *
  466:                      CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  467:                   END IF
  468:                END IF
  469: *
  470:             ELSE
  471: *
  472: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  473: *
  474: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  475: *
  476: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  477: *              of U
  478: *
  479: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  480: *
  481: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  482: *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
  483: *
  484: *              and store L(k) and L(k+1) in columns k and k+1
  485: *
  486:                IF( K.GT.2 ) THEN
  487: *
  488:                   D12 = A( K-1, K )
  489:                   D22 = A( K-1, K-1 ) / D12
  490:                   D11 = A( K, K ) / D12
  491:                   T = ONE / ( D11*D22-ONE )
  492: *
  493:                   DO 30 J = K - 2, 1, -1
  494: *
  495:                      WKM1 = T*( D11*A( J, K-1 )-A( J, K ) )
  496:                      WK = T*( D22*A( J, K )-A( J, K-1 ) )
  497: *
  498:                      DO 20 I = J, 1, -1
  499:                         A( I, J ) = A( I, J ) - (A( I, K ) / D12 )*WK -
  500:      $                              ( A( I, K-1 ) / D12 )*WKM1
  501:    20                CONTINUE
  502: *
  503: *                    Store U(k) and U(k-1) in cols k and k-1 for row J
  504: *
  505:                      A( J, K ) = WK / D12
  506:                      A( J, K-1 ) = WKM1 / D12
  507: *
  508:    30             CONTINUE
  509: *
  510:                END IF
  511: *
  512:             END IF
  513:          END IF
  514: *
  515: *        Store details of the interchanges in IPIV
  516: *
  517:          IF( KSTEP.EQ.1 ) THEN
  518:             IPIV( K ) = KP
  519:          ELSE
  520:             IPIV( K ) = -P
  521:             IPIV( K-1 ) = -KP
  522:          END IF
  523: *
  524: *        Decrease K and return to the start of the main loop
  525: *
  526:          K = K - KSTEP
  527:          GO TO 10
  528: *
  529:       ELSE
  530: *
  531: *        Factorize A as L*D*L**T using the lower triangle of A
  532: *
  533: *        K is the main loop index, increasing from 1 to N in steps of
  534: *        1 or 2
  535: *
  536:          K = 1
  537:    40    CONTINUE
  538: *
  539: *        If K > N, exit from loop
  540: *
  541:          IF( K.GT.N )
  542:      $      GO TO 70
  543:          KSTEP = 1
  544:          P = K
  545: *
  546: *        Determine rows and columns to be interchanged and whether
  547: *        a 1-by-1 or 2-by-2 pivot block will be used
  548: *
  549:          ABSAKK = ABS( A( K, K ) )
  550: *
  551: *        IMAX is the row-index of the largest off-diagonal element in
  552: *        column K, and COLMAX is its absolute value.
  553: *        Determine both COLMAX and IMAX.
  554: *
  555:          IF( K.LT.N ) THEN
  556:             IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  557:             COLMAX = ABS( A( IMAX, K ) )
  558:          ELSE
  559:             COLMAX = ZERO
  560:          END IF
  561: *
  562:          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
  563: *
  564: *           Column K is zero or underflow: set INFO and continue
  565: *
  566:             IF( INFO.EQ.0 )
  567:      $         INFO = K
  568:             KP = K
  569:          ELSE
  570: *
  571: *           Test for interchange
  572: *
  573: *           Equivalent to testing for (used to handle NaN and Inf)
  574: *           ABSAKK.GE.ALPHA*COLMAX
  575: *
  576:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  577: *
  578: *              no interchange, use 1-by-1 pivot block
  579: *
  580:                KP = K
  581:             ELSE
  582: *
  583:                DONE = .FALSE.
  584: *
  585: *              Loop until pivot found
  586: *
  587:    42          CONTINUE
  588: *
  589: *                 Begin pivot search loop body
  590: *
  591: *                 JMAX is the column-index of the largest off-diagonal
  592: *                 element in row IMAX, and ROWMAX is its absolute value.
  593: *                 Determine both ROWMAX and JMAX.
  594: *
  595:                   IF( IMAX.NE.K ) THEN
  596:                      JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  597:                      ROWMAX = ABS( A( IMAX, JMAX ) )
  598:                   ELSE
  599:                      ROWMAX = ZERO
  600:                   END IF
  601: *
  602:                   IF( IMAX.LT.N ) THEN
  603:                      ITEMP = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ),
  604:      $                                     1 )
  605:                      DTEMP = ABS( A( ITEMP, IMAX ) )
  606:                      IF( DTEMP.GT.ROWMAX ) THEN
  607:                         ROWMAX = DTEMP
  608:                         JMAX = ITEMP
  609:                      END IF
  610:                   END IF
  611: *
  612: *                 Equivalent to testing for (used to handle NaN and Inf)
  613: *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  614: *
  615:                   IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
  616:      $            THEN
  617: *
  618: *                    interchange rows and columns K and IMAX,
  619: *                    use 1-by-1 pivot block
  620: *
  621:                      KP = IMAX
  622:                      DONE = .TRUE.
  623: *
  624: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  625: *                 used to handle NaN and Inf
  626: *
  627:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  628: *
  629: *                    interchange rows and columns K+1 and IMAX,
  630: *                    use 2-by-2 pivot block
  631: *
  632:                      KP = IMAX
  633:                      KSTEP = 2
  634:                      DONE = .TRUE.
  635:                   ELSE
  636: *
  637: *                    Pivot NOT found, set variables and repeat
  638: *
  639:                      P = IMAX
  640:                      COLMAX = ROWMAX
  641:                      IMAX = JMAX
  642:                   END IF
  643: *
  644: *                 End pivot search loop body
  645: *
  646:                IF( .NOT. DONE ) GOTO 42
  647: *
  648:             END IF
  649: *
  650: *           Swap TWO rows and TWO columns
  651: *
  652: *           First swap
  653: *
  654:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  655: *
  656: *              Interchange rows and column K and P in the trailing
  657: *              submatrix A(k:n,k:n) if we have a 2-by-2 pivot
  658: *
  659:                IF( P.LT.N )
  660:      $            CALL DSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  661:                IF( P.GT.(K+1) )
  662:      $            CALL DSWAP( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
  663:                T = A( K, K )
  664:                A( K, K ) = A( P, P )
  665:                A( P, P ) = T
  666:             END IF
  667: *
  668: *           Second swap
  669: *
  670:             KK = K + KSTEP - 1
  671:             IF( KP.NE.KK ) THEN
  672: *
  673: *              Interchange rows and columns KK and KP in the trailing
  674: *              submatrix A(k:n,k:n)
  675: *
  676:                IF( KP.LT.N )
  677:      $            CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  678:                IF( ( KK.LT.N ) .AND. ( KP.GT.(KK+1) ) )
  679:      $            CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  680:      $                     LDA )
  681:                T = A( KK, KK )
  682:                A( KK, KK ) = A( KP, KP )
  683:                A( KP, KP ) = T
  684:                IF( KSTEP.EQ.2 ) THEN
  685:                   T = A( K+1, K )
  686:                   A( K+1, K ) = A( KP, K )
  687:                   A( KP, K ) = T
  688:                END IF
  689:             END IF
  690: *
  691: *           Update the trailing submatrix
  692: *
  693:             IF( KSTEP.EQ.1 ) THEN
  694: *
  695: *              1-by-1 pivot block D(k): column k now holds
  696: *
  697: *              W(k) = L(k)*D(k)
  698: *
  699: *              where L(k) is the k-th column of L
  700: *
  701:                IF( K.LT.N ) THEN
  702: *
  703: *              Perform a rank-1 update of A(k+1:n,k+1:n) and
  704: *              store L(k) in column k
  705: *
  706:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  707: *
  708: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  709: *                    A := A - L(k)*D(k)*L(k)**T
  710: *                       = A - W(k)*(1/D(k))*W(k)**T
  711: *
  712:                      D11 = ONE / A( K, K )
  713:                      CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  714:      $                          A( K+1, K+1 ), LDA )
  715: *
  716: *                    Store L(k) in column k
  717: *
  718:                      CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  719:                   ELSE
  720: *
  721: *                    Store L(k) in column k
  722: *
  723:                      D11 = A( K, K )
  724:                      DO 46 II = K + 1, N
  725:                         A( II, K ) = A( II, K ) / D11
  726:    46                CONTINUE
  727: *
  728: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  729: *                    A := A - L(k)*D(k)*L(k)**T
  730: *                       = A - W(k)*(1/D(k))*W(k)**T
  731: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  732: *
  733:                      CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  734:      $                          A( K+1, K+1 ), LDA )
  735:                   END IF
  736:                END IF
  737: *
  738:             ELSE
  739: *
  740: *              2-by-2 pivot block D(k): columns k and k+1 now hold
  741: *
  742: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  743: *
  744: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  745: *              of L
  746: *
  747: *
  748: *              Perform a rank-2 update of A(k+2:n,k+2:n) as
  749: *
  750: *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
  751: *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
  752: *
  753: *              and store L(k) and L(k+1) in columns k and k+1
  754: *
  755:                IF( K.LT.N-1 ) THEN
  756: *
  757:                   D21 = A( K+1, K )
  758:                   D11 = A( K+1, K+1 ) / D21
  759:                   D22 = A( K, K ) / D21
  760:                   T = ONE / ( D11*D22-ONE )
  761: *
  762:                   DO 60 J = K + 2, N
  763: *
  764: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  765: *
  766:                      WK = T*( D11*A( J, K )-A( J, K+1 ) )
  767:                      WKP1 = T*( D22*A( J, K+1 )-A( J, K ) )
  768: *
  769: *                    Perform a rank-2 update of A(k+2:n,k+2:n)
  770: *
  771:                      DO 50 I = J, N
  772:                         A( I, J ) = A( I, J ) - ( A( I, K ) / D21 )*WK -
  773:      $                              ( A( I, K+1 ) / D21 )*WKP1
  774:    50                CONTINUE
  775: *
  776: *                    Store L(k) and L(k+1) in cols k and k+1 for row J
  777: *
  778:                      A( J, K ) = WK / D21
  779:                      A( J, K+1 ) = WKP1 / D21
  780: *
  781:    60             CONTINUE
  782: *
  783:                END IF
  784: *
  785:             END IF
  786:          END IF
  787: *
  788: *        Store details of the interchanges in IPIV
  789: *
  790:          IF( KSTEP.EQ.1 ) THEN
  791:             IPIV( K ) = KP
  792:          ELSE
  793:             IPIV( K ) = -P
  794:             IPIV( K+1 ) = -KP
  795:          END IF
  796: *
  797: *        Increase K and return to the start of the main loop
  798: *
  799:          K = K + KSTEP
  800:          GO TO 40
  801: *
  802:       END IF
  803: *
  804:    70 CONTINUE
  805: *
  806:       RETURN
  807: *
  808: *     End of DSYTF2_ROOK
  809: *
  810:       END

CVSweb interface <joel.bertrand@systella.fr>