File:  [local] / rpl / lapack / lapack / dsytf2_rook.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:34:40 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Lapack.

    1: *> \brief \b DSYTF2_ROOK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTF2_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYTF2_ROOK computes the factorization of a real symmetric matrix A
   39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**T  or  A = L*D*L**T
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, U**T is the transpose of U, and D is symmetric and
   45: *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          symmetric matrix A is stored:
   58: *>          = 'U':  Upper triangular
   59: *>          = 'L':  Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   71: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   72: *>          n-by-n upper triangular part of A contains the upper
   73: *>          triangular part of the matrix A, and the strictly lower
   74: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *>          leading n-by-n lower triangular part of A contains the lower
   76: *>          triangular part of the matrix A, and the strictly upper
   77: *>          triangular part of A is not referenced.
   78: *>
   79: *>          On exit, the block diagonal matrix D and the multipliers used
   80: *>          to obtain the factor U or L (see below for further details).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D.
   93: *>
   94: *>          If UPLO = 'U':
   95: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
   96: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
   97: *>
   98: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
   99: *>             columns k and -IPIV(k) were interchanged and rows and
  100: *>             columns k-1 and -IPIV(k-1) were inerchaged,
  101: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  102: *>
  103: *>          If UPLO = 'L':
  104: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
  105: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
  106: *>
  107: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  108: *>             columns k and -IPIV(k) were interchanged and rows and
  109: *>             columns k+1 and -IPIV(k+1) were inerchaged,
  110: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0: successful exit
  117: *>          < 0: if INFO = -k, the k-th argument had an illegal value
  118: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  119: *>               has been completed, but the block diagonal matrix D is
  120: *>               exactly singular, and division by zero will occur if it
  121: *>               is used to solve a system of equations.
  122: *> \endverbatim
  123: *
  124: *  Authors:
  125: *  ========
  126: *
  127: *> \author Univ. of Tennessee
  128: *> \author Univ. of California Berkeley
  129: *> \author Univ. of Colorado Denver
  130: *> \author NAG Ltd.
  131: *
  132: *> \date November 2013
  133: *
  134: *> \ingroup doubleSYcomputational
  135: *
  136: *> \par Further Details:
  137: *  =====================
  138: *>
  139: *> \verbatim
  140: *>
  141: *>  If UPLO = 'U', then A = U*D*U**T, where
  142: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  143: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  144: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  145: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  146: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  147: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  148: *>
  149: *>             (   I    v    0   )   k-s
  150: *>     U(k) =  (   0    I    0   )   s
  151: *>             (   0    0    I   )   n-k
  152: *>                k-s   s   n-k
  153: *>
  154: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  155: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  156: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  157: *>
  158: *>  If UPLO = 'L', then A = L*D*L**T, where
  159: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  160: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  161: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  162: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  163: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  164: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  165: *>
  166: *>             (   I    0     0   )  k-1
  167: *>     L(k) =  (   0    I     0   )  s
  168: *>             (   0    v     I   )  n-k-s+1
  169: *>                k-1   s  n-k-s+1
  170: *>
  171: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  172: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  173: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  174: *> \endverbatim
  175: *
  176: *> \par Contributors:
  177: *  ==================
  178: *>
  179: *> \verbatim
  180: *>
  181: *>  November 2013,     Igor Kozachenko,
  182: *>                  Computer Science Division,
  183: *>                  University of California, Berkeley
  184: *>
  185: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  186: *>                  School of Mathematics,
  187: *>                  University of Manchester
  188: *>
  189: *>  01-01-96 - Based on modifications by
  190: *>    J. Lewis, Boeing Computer Services Company
  191: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville abd , USA
  192: *> \endverbatim
  193: *
  194: *  =====================================================================
  195:       SUBROUTINE DSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
  196: *
  197: *  -- LAPACK computational routine (version 3.5.0) --
  198: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  199: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  200: *     November 2013
  201: *
  202: *     .. Scalar Arguments ..
  203:       CHARACTER          UPLO
  204:       INTEGER            INFO, LDA, N
  205: *     ..
  206: *     .. Array Arguments ..
  207:       INTEGER            IPIV( * )
  208:       DOUBLE PRECISION   A( LDA, * )
  209: *     ..
  210: *
  211: *  =====================================================================
  212: *
  213: *     .. Parameters ..
  214:       DOUBLE PRECISION   ZERO, ONE
  215:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  216:       DOUBLE PRECISION   EIGHT, SEVTEN
  217:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  218: *     ..
  219: *     .. Local Scalars ..
  220:       LOGICAL            UPPER, DONE
  221:       INTEGER            I, IMAX, J, JMAX, ITEMP, K, KK, KP, KSTEP,
  222:      $                   P, II
  223:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
  224:      $                   ROWMAX, DTEMP, T, WK, WKM1, WKP1, SFMIN
  225: *     ..
  226: *     .. External Functions ..
  227:       LOGICAL            LSAME
  228:       INTEGER            IDAMAX
  229:       DOUBLE PRECISION   DLAMCH
  230:       EXTERNAL           LSAME, IDAMAX, DLAMCH
  231: *     ..
  232: *     .. External Subroutines ..
  233:       EXTERNAL           DSCAL, DSWAP, DSYR, XERBLA
  234: *     ..
  235: *     .. Intrinsic Functions ..
  236:       INTRINSIC          ABS, MAX, SQRT
  237: *     ..
  238: *     .. Executable Statements ..
  239: *
  240: *     Test the input parameters.
  241: *
  242:       INFO = 0
  243:       UPPER = LSAME( UPLO, 'U' )
  244:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  245:          INFO = -1
  246:       ELSE IF( N.LT.0 ) THEN
  247:          INFO = -2
  248:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  249:          INFO = -4
  250:       END IF
  251:       IF( INFO.NE.0 ) THEN
  252:          CALL XERBLA( 'DSYTF2_ROOK', -INFO )
  253:          RETURN
  254:       END IF
  255: *
  256: *     Initialize ALPHA for use in choosing pivot block size.
  257: *
  258:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  259: *
  260: *     Compute machine safe minimum
  261: *
  262:       SFMIN = DLAMCH( 'S' )
  263: *
  264:       IF( UPPER ) THEN
  265: *
  266: *        Factorize A as U*D*U**T using the upper triangle of A
  267: *
  268: *        K is the main loop index, decreasing from N to 1 in steps of
  269: *        1 or 2
  270: *
  271:          K = N
  272:    10    CONTINUE
  273: *
  274: *        If K < 1, exit from loop
  275: *
  276:          IF( K.LT.1 )
  277:      $      GO TO 70
  278:          KSTEP = 1
  279:          P = K
  280: *
  281: *        Determine rows and columns to be interchanged and whether
  282: *        a 1-by-1 or 2-by-2 pivot block will be used
  283: *
  284:          ABSAKK = ABS( A( K, K ) )
  285: *
  286: *        IMAX is the row-index of the largest off-diagonal element in
  287: *        column K, and COLMAX is its absolute value.
  288: *        Determine both COLMAX and IMAX.
  289: *
  290:          IF( K.GT.1 ) THEN
  291:             IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  292:             COLMAX = ABS( A( IMAX, K ) )
  293:          ELSE
  294:             COLMAX = ZERO
  295:          END IF
  296: *
  297:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) ) THEN
  298: *
  299: *           Column K is zero or underflow: set INFO and continue
  300: *
  301:             IF( INFO.EQ.0 )
  302:      $         INFO = K
  303:             KP = K
  304:          ELSE
  305: *
  306: *           Test for interchange
  307: *
  308: *           Equivalent to testing for (used to handle NaN and Inf)
  309: *           ABSAKK.GE.ALPHA*COLMAX
  310: *
  311:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  312: *
  313: *              no interchange,
  314: *              use 1-by-1 pivot block
  315: *
  316:                KP = K
  317:             ELSE
  318: *
  319:                DONE = .FALSE.
  320: *
  321: *              Loop until pivot found
  322: *
  323:    12          CONTINUE
  324: *
  325: *                 Begin pivot search loop body
  326: *
  327: *                 JMAX is the column-index of the largest off-diagonal
  328: *                 element in row IMAX, and ROWMAX is its absolute value.
  329: *                 Determine both ROWMAX and JMAX.
  330: *
  331:                   IF( IMAX.NE.K ) THEN
  332:                      JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ),
  333:      $                                    LDA )
  334:                      ROWMAX = ABS( A( IMAX, JMAX ) )
  335:                   ELSE
  336:                      ROWMAX = ZERO
  337:                   END IF
  338: *
  339:                   IF( IMAX.GT.1 ) THEN
  340:                      ITEMP = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  341:                      DTEMP = ABS( A( ITEMP, IMAX ) )
  342:                      IF( DTEMP.GT.ROWMAX ) THEN
  343:                         ROWMAX = DTEMP
  344:                         JMAX = ITEMP
  345:                      END IF
  346:                   END IF
  347: *
  348: *                 Equivalent to testing for (used to handle NaN and Inf)
  349: *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  350: *
  351:                   IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
  352:      $            THEN
  353: *
  354: *                    interchange rows and columns K and IMAX,
  355: *                    use 1-by-1 pivot block
  356: *
  357:                      KP = IMAX
  358:                      DONE = .TRUE.
  359: *
  360: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  361: *                 used to handle NaN and Inf
  362: *
  363:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  364: *
  365: *                    interchange rows and columns K+1 and IMAX,
  366: *                    use 2-by-2 pivot block
  367: *
  368:                      KP = IMAX
  369:                      KSTEP = 2
  370:                      DONE = .TRUE.
  371:                   ELSE
  372: *
  373: *                    Pivot NOT found, set variables and repeat
  374: *
  375:                      P = IMAX
  376:                      COLMAX = ROWMAX
  377:                      IMAX = JMAX
  378:                   END IF
  379: *
  380: *                 End pivot search loop body
  381: *
  382:                IF( .NOT. DONE ) GOTO 12
  383: *
  384:             END IF
  385: *
  386: *           Swap TWO rows and TWO columns
  387: *
  388: *           First swap
  389: *
  390:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  391: *
  392: *              Interchange rows and column K and P in the leading
  393: *              submatrix A(1:k,1:k) if we have a 2-by-2 pivot
  394: *
  395:                IF( P.GT.1 )
  396:      $            CALL DSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  397:                IF( P.LT.(K-1) )
  398:      $            CALL DSWAP( K-P-1, A( P+1, K ), 1, A( P, P+1 ),
  399:      $                     LDA )
  400:                T = A( K, K )
  401:                A( K, K ) = A( P, P )
  402:                A( P, P ) = T
  403:             END IF
  404: *
  405: *           Second swap
  406: *
  407:             KK = K - KSTEP + 1
  408:             IF( KP.NE.KK ) THEN
  409: *
  410: *              Interchange rows and columns KK and KP in the leading
  411: *              submatrix A(1:k,1:k)
  412: *
  413:                IF( KP.GT.1 )
  414:      $            CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  415:                IF( ( KK.GT.1 ) .AND. ( KP.LT.(KK-1) ) )
  416:      $            CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  417:      $                     LDA )
  418:                T = A( KK, KK )
  419:                A( KK, KK ) = A( KP, KP )
  420:                A( KP, KP ) = T
  421:                IF( KSTEP.EQ.2 ) THEN
  422:                   T = A( K-1, K )
  423:                   A( K-1, K ) = A( KP, K )
  424:                   A( KP, K ) = T
  425:                END IF
  426:             END IF
  427: *
  428: *           Update the leading submatrix
  429: *
  430:             IF( KSTEP.EQ.1 ) THEN
  431: *
  432: *              1-by-1 pivot block D(k): column k now holds
  433: *
  434: *              W(k) = U(k)*D(k)
  435: *
  436: *              where U(k) is the k-th column of U
  437: *
  438:                IF( K.GT.1 ) THEN
  439: *
  440: *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
  441: *                 store U(k) in column k
  442: *
  443:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  444: *
  445: *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
  446: *                    A := A - U(k)*D(k)*U(k)**T
  447: *                       = A - W(k)*1/D(k)*W(k)**T
  448: *
  449:                      D11 = ONE / A( K, K )
  450:                      CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  451: *
  452: *                    Store U(k) in column k
  453: *
  454:                      CALL DSCAL( K-1, D11, A( 1, K ), 1 )
  455:                   ELSE
  456: *
  457: *                    Store L(k) in column K
  458: *
  459:                      D11 = A( K, K )
  460:                      DO 16 II = 1, K - 1
  461:                         A( II, K ) = A( II, K ) / D11
  462:    16                CONTINUE
  463: *
  464: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  465: *                    A := A - U(k)*D(k)*U(k)**T
  466: *                       = A - W(k)*(1/D(k))*W(k)**T
  467: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  468: *
  469:                      CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  470:                   END IF
  471:                END IF
  472: *
  473:             ELSE
  474: *
  475: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  476: *
  477: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  478: *
  479: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  480: *              of U
  481: *
  482: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  483: *
  484: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  485: *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
  486: *
  487: *              and store L(k) and L(k+1) in columns k and k+1
  488: *
  489:                IF( K.GT.2 ) THEN
  490: *
  491:                   D12 = A( K-1, K )
  492:                   D22 = A( K-1, K-1 ) / D12
  493:                   D11 = A( K, K ) / D12
  494:                   T = ONE / ( D11*D22-ONE )
  495: *
  496:                   DO 30 J = K - 2, 1, -1
  497: *
  498:                      WKM1 = T*( D11*A( J, K-1 )-A( J, K ) )
  499:                      WK = T*( D22*A( J, K )-A( J, K-1 ) )
  500: *
  501:                      DO 20 I = J, 1, -1
  502:                         A( I, J ) = A( I, J ) - (A( I, K ) / D12 )*WK -
  503:      $                              ( A( I, K-1 ) / D12 )*WKM1
  504:    20                CONTINUE
  505: *
  506: *                    Store U(k) and U(k-1) in cols k and k-1 for row J
  507: *
  508:                      A( J, K ) = WK / D12
  509:                      A( J, K-1 ) = WKM1 / D12
  510: *
  511:    30             CONTINUE
  512: *
  513:                END IF
  514: *
  515:             END IF
  516:          END IF
  517: *
  518: *        Store details of the interchanges in IPIV
  519: *
  520:          IF( KSTEP.EQ.1 ) THEN
  521:             IPIV( K ) = KP
  522:          ELSE
  523:             IPIV( K ) = -P
  524:             IPIV( K-1 ) = -KP
  525:          END IF
  526: *
  527: *        Decrease K and return to the start of the main loop
  528: *
  529:          K = K - KSTEP
  530:          GO TO 10
  531: *
  532:       ELSE
  533: *
  534: *        Factorize A as L*D*L**T using the lower triangle of A
  535: *
  536: *        K is the main loop index, increasing from 1 to N in steps of
  537: *        1 or 2
  538: *
  539:          K = 1
  540:    40    CONTINUE
  541: *
  542: *        If K > N, exit from loop
  543: *
  544:          IF( K.GT.N )
  545:      $      GO TO 70
  546:          KSTEP = 1
  547:          P = K
  548: *
  549: *        Determine rows and columns to be interchanged and whether
  550: *        a 1-by-1 or 2-by-2 pivot block will be used
  551: *
  552:          ABSAKK = ABS( A( K, K ) )
  553: *
  554: *        IMAX is the row-index of the largest off-diagonal element in
  555: *        column K, and COLMAX is its absolute value.
  556: *        Determine both COLMAX and IMAX.
  557: *
  558:          IF( K.LT.N ) THEN
  559:             IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  560:             COLMAX = ABS( A( IMAX, K ) )
  561:          ELSE
  562:             COLMAX = ZERO
  563:          END IF
  564: *
  565:          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
  566: *
  567: *           Column K is zero or underflow: set INFO and continue
  568: *
  569:             IF( INFO.EQ.0 )
  570:      $         INFO = K
  571:             KP = K
  572:          ELSE
  573: *
  574: *           Test for interchange
  575: *
  576: *           Equivalent to testing for (used to handle NaN and Inf)
  577: *           ABSAKK.GE.ALPHA*COLMAX
  578: *
  579:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  580: *
  581: *              no interchange, use 1-by-1 pivot block
  582: *
  583:                KP = K
  584:             ELSE
  585: *
  586:                DONE = .FALSE.
  587: *
  588: *              Loop until pivot found
  589: *
  590:    42          CONTINUE
  591: *
  592: *                 Begin pivot search loop body
  593: *
  594: *                 JMAX is the column-index of the largest off-diagonal
  595: *                 element in row IMAX, and ROWMAX is its absolute value.
  596: *                 Determine both ROWMAX and JMAX.
  597: *
  598:                   IF( IMAX.NE.K ) THEN
  599:                      JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  600:                      ROWMAX = ABS( A( IMAX, JMAX ) )
  601:                   ELSE
  602:                      ROWMAX = ZERO
  603:                   END IF
  604: *
  605:                   IF( IMAX.LT.N ) THEN
  606:                      ITEMP = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ),
  607:      $                                     1 )
  608:                      DTEMP = ABS( A( ITEMP, IMAX ) )
  609:                      IF( DTEMP.GT.ROWMAX ) THEN
  610:                         ROWMAX = DTEMP
  611:                         JMAX = ITEMP
  612:                      END IF
  613:                   END IF
  614: *
  615: *                 Equivalent to testing for (used to handle NaN and Inf)
  616: *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  617: *
  618:                   IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
  619:      $            THEN
  620: *
  621: *                    interchange rows and columns K and IMAX,
  622: *                    use 1-by-1 pivot block
  623: *
  624:                      KP = IMAX
  625:                      DONE = .TRUE.
  626: *
  627: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  628: *                 used to handle NaN and Inf
  629: *
  630:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  631: *
  632: *                    interchange rows and columns K+1 and IMAX,
  633: *                    use 2-by-2 pivot block
  634: *
  635:                      KP = IMAX
  636:                      KSTEP = 2
  637:                      DONE = .TRUE.
  638:                   ELSE
  639: *
  640: *                    Pivot NOT found, set variables and repeat
  641: *
  642:                      P = IMAX
  643:                      COLMAX = ROWMAX
  644:                      IMAX = JMAX
  645:                   END IF
  646: *
  647: *                 End pivot search loop body
  648: *
  649:                IF( .NOT. DONE ) GOTO 42
  650: *
  651:             END IF
  652: *
  653: *           Swap TWO rows and TWO columns
  654: *
  655: *           First swap
  656: *
  657:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  658: *
  659: *              Interchange rows and column K and P in the trailing
  660: *              submatrix A(k:n,k:n) if we have a 2-by-2 pivot
  661: *
  662:                IF( P.LT.N )
  663:      $            CALL DSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  664:                IF( P.GT.(K+1) )
  665:      $            CALL DSWAP( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
  666:                T = A( K, K )
  667:                A( K, K ) = A( P, P )
  668:                A( P, P ) = T
  669:             END IF
  670: *
  671: *           Second swap
  672: *
  673:             KK = K + KSTEP - 1
  674:             IF( KP.NE.KK ) THEN
  675: *
  676: *              Interchange rows and columns KK and KP in the trailing
  677: *              submatrix A(k:n,k:n)
  678: *
  679:                IF( KP.LT.N )
  680:      $            CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  681:                IF( ( KK.LT.N ) .AND. ( KP.GT.(KK+1) ) )
  682:      $            CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  683:      $                     LDA )
  684:                T = A( KK, KK )
  685:                A( KK, KK ) = A( KP, KP )
  686:                A( KP, KP ) = T
  687:                IF( KSTEP.EQ.2 ) THEN
  688:                   T = A( K+1, K )
  689:                   A( K+1, K ) = A( KP, K )
  690:                   A( KP, K ) = T
  691:                END IF
  692:             END IF
  693: *
  694: *           Update the trailing submatrix
  695: *
  696:             IF( KSTEP.EQ.1 ) THEN
  697: *
  698: *              1-by-1 pivot block D(k): column k now holds
  699: *
  700: *              W(k) = L(k)*D(k)
  701: *
  702: *              where L(k) is the k-th column of L
  703: *
  704:                IF( K.LT.N ) THEN
  705: *
  706: *              Perform a rank-1 update of A(k+1:n,k+1:n) and
  707: *              store L(k) in column k
  708: *
  709:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  710: *
  711: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  712: *                    A := A - L(k)*D(k)*L(k)**T
  713: *                       = A - W(k)*(1/D(k))*W(k)**T
  714: *
  715:                      D11 = ONE / A( K, K )
  716:                      CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  717:      $                          A( K+1, K+1 ), LDA )
  718: *
  719: *                    Store L(k) in column k
  720: *
  721:                      CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  722:                   ELSE
  723: *
  724: *                    Store L(k) in column k
  725: *
  726:                      D11 = A( K, K )
  727:                      DO 46 II = K + 1, N
  728:                         A( II, K ) = A( II, K ) / D11
  729:    46                CONTINUE
  730: *
  731: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  732: *                    A := A - L(k)*D(k)*L(k)**T
  733: *                       = A - W(k)*(1/D(k))*W(k)**T
  734: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  735: *
  736:                      CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  737:      $                          A( K+1, K+1 ), LDA )
  738:                   END IF
  739:                END IF
  740: *
  741:             ELSE
  742: *
  743: *              2-by-2 pivot block D(k): columns k and k+1 now hold
  744: *
  745: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  746: *
  747: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  748: *              of L
  749: *
  750: *
  751: *              Perform a rank-2 update of A(k+2:n,k+2:n) as
  752: *
  753: *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
  754: *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
  755: *
  756: *              and store L(k) and L(k+1) in columns k and k+1
  757: *
  758:                IF( K.LT.N-1 ) THEN
  759: *
  760:                   D21 = A( K+1, K )
  761:                   D11 = A( K+1, K+1 ) / D21
  762:                   D22 = A( K, K ) / D21
  763:                   T = ONE / ( D11*D22-ONE )
  764: *
  765:                   DO 60 J = K + 2, N
  766: *
  767: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  768: *
  769:                      WK = T*( D11*A( J, K )-A( J, K+1 ) )
  770:                      WKP1 = T*( D22*A( J, K+1 )-A( J, K ) )
  771: *
  772: *                    Perform a rank-2 update of A(k+2:n,k+2:n)
  773: *
  774:                      DO 50 I = J, N
  775:                         A( I, J ) = A( I, J ) - ( A( I, K ) / D21 )*WK -
  776:      $                              ( A( I, K+1 ) / D21 )*WKP1
  777:    50                CONTINUE
  778: *
  779: *                    Store L(k) and L(k+1) in cols k and k+1 for row J
  780: *
  781:                      A( J, K ) = WK / D21
  782:                      A( J, K+1 ) = WKP1 / D21
  783: *
  784:    60             CONTINUE
  785: *
  786:                END IF
  787: *
  788:             END IF
  789:          END IF
  790: *
  791: *        Store details of the interchanges in IPIV
  792: *
  793:          IF( KSTEP.EQ.1 ) THEN
  794:             IPIV( K ) = KP
  795:          ELSE
  796:             IPIV( K ) = -P
  797:             IPIV( K+1 ) = -KP
  798:          END IF
  799: *
  800: *        Increase K and return to the start of the main loop
  801: *
  802:          K = K + KSTEP
  803:          GO TO 40
  804: *
  805:       END IF
  806: *
  807:    70 CONTINUE
  808: *
  809:       RETURN
  810: *
  811: *     End of DSYTF2_ROOK
  812: *
  813:       END

CVSweb interface <joel.bertrand@systella.fr>