File:  [local] / rpl / lapack / lapack / dsytf2_rk.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:10 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTF2_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTF2_RK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2_rk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2_rk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2_rk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), E ( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *> DSYTF2_RK computes the factorization of a real symmetric matrix A
   38: *> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
   39: *>
   40: *>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
   41: *>
   42: *> where U (or L) is unit upper (or lower) triangular matrix,
   43: *> U**T (or L**T) is the transpose of U (or L), P is a permutation
   44: *> matrix, P**T is the transpose of P, and D is symmetric and block
   45: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> For more information see Further Details section.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] UPLO
   55: *> \verbatim
   56: *>          UPLO is CHARACTER*1
   57: *>          Specifies whether the upper or lower triangular part of the
   58: *>          symmetric matrix A is stored:
   59: *>          = 'U':  Upper triangular
   60: *>          = 'L':  Lower triangular
   61: *> \endverbatim
   62: *>
   63: *> \param[in] N
   64: *> \verbatim
   65: *>          N is INTEGER
   66: *>          The order of the matrix A.  N >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in,out] A
   70: *> \verbatim
   71: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   72: *>          On entry, the symmetric matrix A.
   73: *>            If UPLO = 'U': the leading N-by-N upper triangular part
   74: *>            of A contains the upper triangular part of the matrix A,
   75: *>            and the strictly lower triangular part of A is not
   76: *>            referenced.
   77: *>
   78: *>            If UPLO = 'L': the leading N-by-N lower triangular part
   79: *>            of A contains the lower triangular part of the matrix A,
   80: *>            and the strictly upper triangular part of A is not
   81: *>            referenced.
   82: *>
   83: *>          On exit, contains:
   84: *>            a) ONLY diagonal elements of the symmetric block diagonal
   85: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
   86: *>               (superdiagonal (or subdiagonal) elements of D
   87: *>                are stored on exit in array E), and
   88: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
   89: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDA
   93: *> \verbatim
   94: *>          LDA is INTEGER
   95: *>          The leading dimension of the array A.  LDA >= max(1,N).
   96: *> \endverbatim
   97: *>
   98: *> \param[out] E
   99: *> \verbatim
  100: *>          E is DOUBLE PRECISION array, dimension (N)
  101: *>          On exit, contains the superdiagonal (or subdiagonal)
  102: *>          elements of the symmetric block diagonal matrix D
  103: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  104: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
  105: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
  106: *>
  107: *>          NOTE: For 1-by-1 diagonal block D(k), where
  108: *>          1 <= k <= N, the element E(k) is set to 0 in both
  109: *>          UPLO = 'U' or UPLO = 'L' cases.
  110: *> \endverbatim
  111: *>
  112: *> \param[out] IPIV
  113: *> \verbatim
  114: *>          IPIV is INTEGER array, dimension (N)
  115: *>          IPIV describes the permutation matrix P in the factorization
  116: *>          of matrix A as follows. The absolute value of IPIV(k)
  117: *>          represents the index of row and column that were
  118: *>          interchanged with the k-th row and column. The value of UPLO
  119: *>          describes the order in which the interchanges were applied.
  120: *>          Also, the sign of IPIV represents the block structure of
  121: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
  122: *>          diagonal blocks which correspond to 1 or 2 interchanges
  123: *>          at each factorization step. For more info see Further
  124: *>          Details section.
  125: *>
  126: *>          If UPLO = 'U',
  127: *>          ( in factorization order, k decreases from N to 1 ):
  128: *>            a) A single positive entry IPIV(k) > 0 means:
  129: *>               D(k,k) is a 1-by-1 diagonal block.
  130: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  131: *>               interchanged in the matrix A(1:N,1:N);
  132: *>               If IPIV(k) = k, no interchange occurred.
  133: *>
  134: *>            b) A pair of consecutive negative entries
  135: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
  136: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  137: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  138: *>               1) If -IPIV(k) != k, rows and columns
  139: *>                  k and -IPIV(k) were interchanged
  140: *>                  in the matrix A(1:N,1:N).
  141: *>                  If -IPIV(k) = k, no interchange occurred.
  142: *>               2) If -IPIV(k-1) != k-1, rows and columns
  143: *>                  k-1 and -IPIV(k-1) were interchanged
  144: *>                  in the matrix A(1:N,1:N).
  145: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
  146: *>
  147: *>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
  148: *>
  149: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  150: *>
  151: *>          If UPLO = 'L',
  152: *>          ( in factorization order, k increases from 1 to N ):
  153: *>            a) A single positive entry IPIV(k) > 0 means:
  154: *>               D(k,k) is a 1-by-1 diagonal block.
  155: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  156: *>               interchanged in the matrix A(1:N,1:N).
  157: *>               If IPIV(k) = k, no interchange occurred.
  158: *>
  159: *>            b) A pair of consecutive negative entries
  160: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
  161: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  162: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  163: *>               1) If -IPIV(k) != k, rows and columns
  164: *>                  k and -IPIV(k) were interchanged
  165: *>                  in the matrix A(1:N,1:N).
  166: *>                  If -IPIV(k) = k, no interchange occurred.
  167: *>               2) If -IPIV(k+1) != k+1, rows and columns
  168: *>                  k-1 and -IPIV(k-1) were interchanged
  169: *>                  in the matrix A(1:N,1:N).
  170: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
  171: *>
  172: *>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
  173: *>
  174: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0: successful exit
  181: *>
  182: *>          < 0: If INFO = -k, the k-th argument had an illegal value
  183: *>
  184: *>          > 0: If INFO = k, the matrix A is singular, because:
  185: *>                 If UPLO = 'U': column k in the upper
  186: *>                 triangular part of A contains all zeros.
  187: *>                 If UPLO = 'L': column k in the lower
  188: *>                 triangular part of A contains all zeros.
  189: *>
  190: *>               Therefore D(k,k) is exactly zero, and superdiagonal
  191: *>               elements of column k of U (or subdiagonal elements of
  192: *>               column k of L ) are all zeros. The factorization has
  193: *>               been completed, but the block diagonal matrix D is
  194: *>               exactly singular, and division by zero will occur if
  195: *>               it is used to solve a system of equations.
  196: *>
  197: *>               NOTE: INFO only stores the first occurrence of
  198: *>               a singularity, any subsequent occurrence of singularity
  199: *>               is not stored in INFO even though the factorization
  200: *>               always completes.
  201: *> \endverbatim
  202: *
  203: *  Authors:
  204: *  ========
  205: *
  206: *> \author Univ. of Tennessee
  207: *> \author Univ. of California Berkeley
  208: *> \author Univ. of Colorado Denver
  209: *> \author NAG Ltd.
  210: *
  211: *> \ingroup doubleSYcomputational
  212: *
  213: *> \par Further Details:
  214: *  =====================
  215: *>
  216: *> \verbatim
  217: *> TODO: put further details
  218: *> \endverbatim
  219: *
  220: *> \par Contributors:
  221: *  ==================
  222: *>
  223: *> \verbatim
  224: *>
  225: *>  December 2016,  Igor Kozachenko,
  226: *>                  Computer Science Division,
  227: *>                  University of California, Berkeley
  228: *>
  229: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  230: *>                  School of Mathematics,
  231: *>                  University of Manchester
  232: *>
  233: *>  01-01-96 - Based on modifications by
  234: *>    J. Lewis, Boeing Computer Services Company
  235: *>    A. Petitet, Computer Science Dept.,
  236: *>                Univ. of Tenn., Knoxville abd , USA
  237: *> \endverbatim
  238: *
  239: *  =====================================================================
  240:       SUBROUTINE DSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
  241: *
  242: *  -- LAPACK computational routine --
  243: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  244: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  245: *
  246: *     .. Scalar Arguments ..
  247:       CHARACTER          UPLO
  248:       INTEGER            INFO, LDA, N
  249: *     ..
  250: *     .. Array Arguments ..
  251:       INTEGER            IPIV( * )
  252:       DOUBLE PRECISION   A( LDA, * ), E( * )
  253: *     ..
  254: *
  255: *  =====================================================================
  256: *
  257: *     .. Parameters ..
  258:       DOUBLE PRECISION   ZERO, ONE
  259:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  260:       DOUBLE PRECISION   EIGHT, SEVTEN
  261:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  262: *     ..
  263: *     .. Local Scalars ..
  264:       LOGICAL            UPPER, DONE
  265:       INTEGER            I, IMAX, J, JMAX, ITEMP, K, KK, KP, KSTEP,
  266:      $                   P, II
  267:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
  268:      $                   ROWMAX, DTEMP, T, WK, WKM1, WKP1, SFMIN
  269: *     ..
  270: *     .. External Functions ..
  271:       LOGICAL            LSAME
  272:       INTEGER            IDAMAX
  273:       DOUBLE PRECISION   DLAMCH
  274:       EXTERNAL           LSAME, IDAMAX, DLAMCH
  275: *     ..
  276: *     .. External Subroutines ..
  277:       EXTERNAL           DSCAL, DSWAP, DSYR, XERBLA
  278: *     ..
  279: *     .. Intrinsic Functions ..
  280:       INTRINSIC          ABS, MAX, SQRT
  281: *     ..
  282: *     .. Executable Statements ..
  283: *
  284: *     Test the input parameters.
  285: *
  286:       INFO = 0
  287:       UPPER = LSAME( UPLO, 'U' )
  288:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  289:          INFO = -1
  290:       ELSE IF( N.LT.0 ) THEN
  291:          INFO = -2
  292:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  293:          INFO = -4
  294:       END IF
  295:       IF( INFO.NE.0 ) THEN
  296:          CALL XERBLA( 'DSYTF2_RK', -INFO )
  297:          RETURN
  298:       END IF
  299: *
  300: *     Initialize ALPHA for use in choosing pivot block size.
  301: *
  302:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  303: *
  304: *     Compute machine safe minimum
  305: *
  306:       SFMIN = DLAMCH( 'S' )
  307: *
  308:       IF( UPPER ) THEN
  309: *
  310: *        Factorize A as U*D*U**T using the upper triangle of A
  311: *
  312: *        Initialize the first entry of array E, where superdiagonal
  313: *        elements of D are stored
  314: *
  315:          E( 1 ) = ZERO
  316: *
  317: *        K is the main loop index, decreasing from N to 1 in steps of
  318: *        1 or 2
  319: *
  320:          K = N
  321:    10    CONTINUE
  322: *
  323: *        If K < 1, exit from loop
  324: *
  325:          IF( K.LT.1 )
  326:      $      GO TO 34
  327:          KSTEP = 1
  328:          P = K
  329: *
  330: *        Determine rows and columns to be interchanged and whether
  331: *        a 1-by-1 or 2-by-2 pivot block will be used
  332: *
  333:          ABSAKK = ABS( A( K, K ) )
  334: *
  335: *        IMAX is the row-index of the largest off-diagonal element in
  336: *        column K, and COLMAX is its absolute value.
  337: *        Determine both COLMAX and IMAX.
  338: *
  339:          IF( K.GT.1 ) THEN
  340:             IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  341:             COLMAX = ABS( A( IMAX, K ) )
  342:          ELSE
  343:             COLMAX = ZERO
  344:          END IF
  345: *
  346:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) ) THEN
  347: *
  348: *           Column K is zero or underflow: set INFO and continue
  349: *
  350:             IF( INFO.EQ.0 )
  351:      $         INFO = K
  352:             KP = K
  353: *
  354: *           Set E( K ) to zero
  355: *
  356:             IF( K.GT.1 )
  357:      $         E( K ) = ZERO
  358: *
  359:          ELSE
  360: *
  361: *           Test for interchange
  362: *
  363: *           Equivalent to testing for (used to handle NaN and Inf)
  364: *           ABSAKK.GE.ALPHA*COLMAX
  365: *
  366:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  367: *
  368: *              no interchange,
  369: *              use 1-by-1 pivot block
  370: *
  371:                KP = K
  372:             ELSE
  373: *
  374:                DONE = .FALSE.
  375: *
  376: *              Loop until pivot found
  377: *
  378:    12          CONTINUE
  379: *
  380: *                 Begin pivot search loop body
  381: *
  382: *                 JMAX is the column-index of the largest off-diagonal
  383: *                 element in row IMAX, and ROWMAX is its absolute value.
  384: *                 Determine both ROWMAX and JMAX.
  385: *
  386:                   IF( IMAX.NE.K ) THEN
  387:                      JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ),
  388:      $                                    LDA )
  389:                      ROWMAX = ABS( A( IMAX, JMAX ) )
  390:                   ELSE
  391:                      ROWMAX = ZERO
  392:                   END IF
  393: *
  394:                   IF( IMAX.GT.1 ) THEN
  395:                      ITEMP = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  396:                      DTEMP = ABS( A( ITEMP, IMAX ) )
  397:                      IF( DTEMP.GT.ROWMAX ) THEN
  398:                         ROWMAX = DTEMP
  399:                         JMAX = ITEMP
  400:                      END IF
  401:                   END IF
  402: *
  403: *                 Equivalent to testing for (used to handle NaN and Inf)
  404: *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  405: *
  406:                   IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
  407:      $            THEN
  408: *
  409: *                    interchange rows and columns K and IMAX,
  410: *                    use 1-by-1 pivot block
  411: *
  412:                      KP = IMAX
  413:                      DONE = .TRUE.
  414: *
  415: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  416: *                 used to handle NaN and Inf
  417: *
  418:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  419: *
  420: *                    interchange rows and columns K+1 and IMAX,
  421: *                    use 2-by-2 pivot block
  422: *
  423:                      KP = IMAX
  424:                      KSTEP = 2
  425:                      DONE = .TRUE.
  426:                   ELSE
  427: *
  428: *                    Pivot NOT found, set variables and repeat
  429: *
  430:                      P = IMAX
  431:                      COLMAX = ROWMAX
  432:                      IMAX = JMAX
  433:                   END IF
  434: *
  435: *                 End pivot search loop body
  436: *
  437:                IF( .NOT. DONE ) GOTO 12
  438: *
  439:             END IF
  440: *
  441: *           Swap TWO rows and TWO columns
  442: *
  443: *           First swap
  444: *
  445:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  446: *
  447: *              Interchange rows and column K and P in the leading
  448: *              submatrix A(1:k,1:k) if we have a 2-by-2 pivot
  449: *
  450:                IF( P.GT.1 )
  451:      $            CALL DSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  452:                IF( P.LT.(K-1) )
  453:      $            CALL DSWAP( K-P-1, A( P+1, K ), 1, A( P, P+1 ),
  454:      $                     LDA )
  455:                T = A( K, K )
  456:                A( K, K ) = A( P, P )
  457:                A( P, P ) = T
  458: *
  459: *              Convert upper triangle of A into U form by applying
  460: *              the interchanges in columns k+1:N.
  461: *
  462:                IF( K.LT.N )
  463:      $            CALL DSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ), LDA )
  464: *
  465:             END IF
  466: *
  467: *           Second swap
  468: *
  469:             KK = K - KSTEP + 1
  470:             IF( KP.NE.KK ) THEN
  471: *
  472: *              Interchange rows and columns KK and KP in the leading
  473: *              submatrix A(1:k,1:k)
  474: *
  475:                IF( KP.GT.1 )
  476:      $            CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  477:                IF( ( KK.GT.1 ) .AND. ( KP.LT.(KK-1) ) )
  478:      $            CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  479:      $                     LDA )
  480:                T = A( KK, KK )
  481:                A( KK, KK ) = A( KP, KP )
  482:                A( KP, KP ) = T
  483:                IF( KSTEP.EQ.2 ) THEN
  484:                   T = A( K-1, K )
  485:                   A( K-1, K ) = A( KP, K )
  486:                   A( KP, K ) = T
  487:                END IF
  488: *
  489: *              Convert upper triangle of A into U form by applying
  490: *              the interchanges in columns k+1:N.
  491: *
  492:                IF( K.LT.N )
  493:      $            CALL DSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  494:      $                        LDA )
  495: *
  496:             END IF
  497: *
  498: *           Update the leading submatrix
  499: *
  500:             IF( KSTEP.EQ.1 ) THEN
  501: *
  502: *              1-by-1 pivot block D(k): column k now holds
  503: *
  504: *              W(k) = U(k)*D(k)
  505: *
  506: *              where U(k) is the k-th column of U
  507: *
  508:                IF( K.GT.1 ) THEN
  509: *
  510: *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
  511: *                 store U(k) in column k
  512: *
  513:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  514: *
  515: *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
  516: *                    A := A - U(k)*D(k)*U(k)**T
  517: *                       = A - W(k)*1/D(k)*W(k)**T
  518: *
  519:                      D11 = ONE / A( K, K )
  520:                      CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  521: *
  522: *                    Store U(k) in column k
  523: *
  524:                      CALL DSCAL( K-1, D11, A( 1, K ), 1 )
  525:                   ELSE
  526: *
  527: *                    Store L(k) in column K
  528: *
  529:                      D11 = A( K, K )
  530:                      DO 16 II = 1, K - 1
  531:                         A( II, K ) = A( II, K ) / D11
  532:    16                CONTINUE
  533: *
  534: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  535: *                    A := A - U(k)*D(k)*U(k)**T
  536: *                       = A - W(k)*(1/D(k))*W(k)**T
  537: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  538: *
  539:                      CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  540:                   END IF
  541: *
  542: *                 Store the superdiagonal element of D in array E
  543: *
  544:                   E( K ) = ZERO
  545: *
  546:                END IF
  547: *
  548:             ELSE
  549: *
  550: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  551: *
  552: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  553: *
  554: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  555: *              of U
  556: *
  557: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  558: *
  559: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  560: *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
  561: *
  562: *              and store L(k) and L(k+1) in columns k and k+1
  563: *
  564:                IF( K.GT.2 ) THEN
  565: *
  566:                   D12 = A( K-1, K )
  567:                   D22 = A( K-1, K-1 ) / D12
  568:                   D11 = A( K, K ) / D12
  569:                   T = ONE / ( D11*D22-ONE )
  570: *
  571:                   DO 30 J = K - 2, 1, -1
  572: *
  573:                      WKM1 = T*( D11*A( J, K-1 )-A( J, K ) )
  574:                      WK = T*( D22*A( J, K )-A( J, K-1 ) )
  575: *
  576:                      DO 20 I = J, 1, -1
  577:                         A( I, J ) = A( I, J ) - (A( I, K ) / D12 )*WK -
  578:      $                              ( A( I, K-1 ) / D12 )*WKM1
  579:    20                CONTINUE
  580: *
  581: *                    Store U(k) and U(k-1) in cols k and k-1 for row J
  582: *
  583:                      A( J, K ) = WK / D12
  584:                      A( J, K-1 ) = WKM1 / D12
  585: *
  586:    30             CONTINUE
  587: *
  588:                END IF
  589: *
  590: *              Copy superdiagonal elements of D(K) to E(K) and
  591: *              ZERO out superdiagonal entry of A
  592: *
  593:                E( K ) = A( K-1, K )
  594:                E( K-1 ) = ZERO
  595:                A( K-1, K ) = ZERO
  596: *
  597:             END IF
  598: *
  599: *           End column K is nonsingular
  600: *
  601:          END IF
  602: *
  603: *        Store details of the interchanges in IPIV
  604: *
  605:          IF( KSTEP.EQ.1 ) THEN
  606:             IPIV( K ) = KP
  607:          ELSE
  608:             IPIV( K ) = -P
  609:             IPIV( K-1 ) = -KP
  610:          END IF
  611: *
  612: *        Decrease K and return to the start of the main loop
  613: *
  614:          K = K - KSTEP
  615:          GO TO 10
  616: *
  617:    34    CONTINUE
  618: *
  619:       ELSE
  620: *
  621: *        Factorize A as L*D*L**T using the lower triangle of A
  622: *
  623: *        Initialize the unused last entry of the subdiagonal array E.
  624: *
  625:          E( N ) = ZERO
  626: *
  627: *        K is the main loop index, increasing from 1 to N in steps of
  628: *        1 or 2
  629: *
  630:          K = 1
  631:    40    CONTINUE
  632: *
  633: *        If K > N, exit from loop
  634: *
  635:          IF( K.GT.N )
  636:      $      GO TO 64
  637:          KSTEP = 1
  638:          P = K
  639: *
  640: *        Determine rows and columns to be interchanged and whether
  641: *        a 1-by-1 or 2-by-2 pivot block will be used
  642: *
  643:          ABSAKK = ABS( A( K, K ) )
  644: *
  645: *        IMAX is the row-index of the largest off-diagonal element in
  646: *        column K, and COLMAX is its absolute value.
  647: *        Determine both COLMAX and IMAX.
  648: *
  649:          IF( K.LT.N ) THEN
  650:             IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  651:             COLMAX = ABS( A( IMAX, K ) )
  652:          ELSE
  653:             COLMAX = ZERO
  654:          END IF
  655: *
  656:          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
  657: *
  658: *           Column K is zero or underflow: set INFO and continue
  659: *
  660:             IF( INFO.EQ.0 )
  661:      $         INFO = K
  662:             KP = K
  663: *
  664: *           Set E( K ) to zero
  665: *
  666:             IF( K.LT.N )
  667:      $         E( K ) = ZERO
  668: *
  669:          ELSE
  670: *
  671: *           Test for interchange
  672: *
  673: *           Equivalent to testing for (used to handle NaN and Inf)
  674: *           ABSAKK.GE.ALPHA*COLMAX
  675: *
  676:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  677: *
  678: *              no interchange, use 1-by-1 pivot block
  679: *
  680:                KP = K
  681: *
  682:             ELSE
  683: *
  684:                DONE = .FALSE.
  685: *
  686: *              Loop until pivot found
  687: *
  688:    42          CONTINUE
  689: *
  690: *                 Begin pivot search loop body
  691: *
  692: *                 JMAX is the column-index of the largest off-diagonal
  693: *                 element in row IMAX, and ROWMAX is its absolute value.
  694: *                 Determine both ROWMAX and JMAX.
  695: *
  696:                   IF( IMAX.NE.K ) THEN
  697:                      JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  698:                      ROWMAX = ABS( A( IMAX, JMAX ) )
  699:                   ELSE
  700:                      ROWMAX = ZERO
  701:                   END IF
  702: *
  703:                   IF( IMAX.LT.N ) THEN
  704:                      ITEMP = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ),
  705:      $                                     1 )
  706:                      DTEMP = ABS( A( ITEMP, IMAX ) )
  707:                      IF( DTEMP.GT.ROWMAX ) THEN
  708:                         ROWMAX = DTEMP
  709:                         JMAX = ITEMP
  710:                      END IF
  711:                   END IF
  712: *
  713: *                 Equivalent to testing for (used to handle NaN and Inf)
  714: *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  715: *
  716:                   IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
  717:      $            THEN
  718: *
  719: *                    interchange rows and columns K and IMAX,
  720: *                    use 1-by-1 pivot block
  721: *
  722:                      KP = IMAX
  723:                      DONE = .TRUE.
  724: *
  725: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  726: *                 used to handle NaN and Inf
  727: *
  728:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  729: *
  730: *                    interchange rows and columns K+1 and IMAX,
  731: *                    use 2-by-2 pivot block
  732: *
  733:                      KP = IMAX
  734:                      KSTEP = 2
  735:                      DONE = .TRUE.
  736:                   ELSE
  737: *
  738: *                    Pivot NOT found, set variables and repeat
  739: *
  740:                      P = IMAX
  741:                      COLMAX = ROWMAX
  742:                      IMAX = JMAX
  743:                   END IF
  744: *
  745: *                 End pivot search loop body
  746: *
  747:                IF( .NOT. DONE ) GOTO 42
  748: *
  749:             END IF
  750: *
  751: *           Swap TWO rows and TWO columns
  752: *
  753: *           First swap
  754: *
  755:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  756: *
  757: *              Interchange rows and column K and P in the trailing
  758: *              submatrix A(k:n,k:n) if we have a 2-by-2 pivot
  759: *
  760:                IF( P.LT.N )
  761:      $            CALL DSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  762:                IF( P.GT.(K+1) )
  763:      $            CALL DSWAP( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
  764:                T = A( K, K )
  765:                A( K, K ) = A( P, P )
  766:                A( P, P ) = T
  767: *
  768: *              Convert lower triangle of A into L form by applying
  769: *              the interchanges in columns 1:k-1.
  770: *
  771:                IF ( K.GT.1 )
  772:      $            CALL DSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
  773: *
  774:             END IF
  775: *
  776: *           Second swap
  777: *
  778:             KK = K + KSTEP - 1
  779:             IF( KP.NE.KK ) THEN
  780: *
  781: *              Interchange rows and columns KK and KP in the trailing
  782: *              submatrix A(k:n,k:n)
  783: *
  784:                IF( KP.LT.N )
  785:      $            CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  786:                IF( ( KK.LT.N ) .AND. ( KP.GT.(KK+1) ) )
  787:      $            CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  788:      $                     LDA )
  789:                T = A( KK, KK )
  790:                A( KK, KK ) = A( KP, KP )
  791:                A( KP, KP ) = T
  792:                IF( KSTEP.EQ.2 ) THEN
  793:                   T = A( K+1, K )
  794:                   A( K+1, K ) = A( KP, K )
  795:                   A( KP, K ) = T
  796:                END IF
  797: *
  798: *              Convert lower triangle of A into L form by applying
  799: *              the interchanges in columns 1:k-1.
  800: *
  801:                IF ( K.GT.1 )
  802:      $            CALL DSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  803: *
  804:             END IF
  805: *
  806: *           Update the trailing submatrix
  807: *
  808:             IF( KSTEP.EQ.1 ) THEN
  809: *
  810: *              1-by-1 pivot block D(k): column k now holds
  811: *
  812: *              W(k) = L(k)*D(k)
  813: *
  814: *              where L(k) is the k-th column of L
  815: *
  816:                IF( K.LT.N ) THEN
  817: *
  818: *              Perform a rank-1 update of A(k+1:n,k+1:n) and
  819: *              store L(k) in column k
  820: *
  821:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  822: *
  823: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  824: *                    A := A - L(k)*D(k)*L(k)**T
  825: *                       = A - W(k)*(1/D(k))*W(k)**T
  826: *
  827:                      D11 = ONE / A( K, K )
  828:                      CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  829:      $                          A( K+1, K+1 ), LDA )
  830: *
  831: *                    Store L(k) in column k
  832: *
  833:                      CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  834:                   ELSE
  835: *
  836: *                    Store L(k) in column k
  837: *
  838:                      D11 = A( K, K )
  839:                      DO 46 II = K + 1, N
  840:                         A( II, K ) = A( II, K ) / D11
  841:    46                CONTINUE
  842: *
  843: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  844: *                    A := A - L(k)*D(k)*L(k)**T
  845: *                       = A - W(k)*(1/D(k))*W(k)**T
  846: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  847: *
  848:                      CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  849:      $                          A( K+1, K+1 ), LDA )
  850:                   END IF
  851: *
  852: *                 Store the subdiagonal element of D in array E
  853: *
  854:                   E( K ) = ZERO
  855: *
  856:                END IF
  857: *
  858:             ELSE
  859: *
  860: *              2-by-2 pivot block D(k): columns k and k+1 now hold
  861: *
  862: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  863: *
  864: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  865: *              of L
  866: *
  867: *
  868: *              Perform a rank-2 update of A(k+2:n,k+2:n) as
  869: *
  870: *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
  871: *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
  872: *
  873: *              and store L(k) and L(k+1) in columns k and k+1
  874: *
  875:                IF( K.LT.N-1 ) THEN
  876: *
  877:                   D21 = A( K+1, K )
  878:                   D11 = A( K+1, K+1 ) / D21
  879:                   D22 = A( K, K ) / D21
  880:                   T = ONE / ( D11*D22-ONE )
  881: *
  882:                   DO 60 J = K + 2, N
  883: *
  884: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  885: *
  886:                      WK = T*( D11*A( J, K )-A( J, K+1 ) )
  887:                      WKP1 = T*( D22*A( J, K+1 )-A( J, K ) )
  888: *
  889: *                    Perform a rank-2 update of A(k+2:n,k+2:n)
  890: *
  891:                      DO 50 I = J, N
  892:                         A( I, J ) = A( I, J ) - ( A( I, K ) / D21 )*WK -
  893:      $                              ( A( I, K+1 ) / D21 )*WKP1
  894:    50                CONTINUE
  895: *
  896: *                    Store L(k) and L(k+1) in cols k and k+1 for row J
  897: *
  898:                      A( J, K ) = WK / D21
  899:                      A( J, K+1 ) = WKP1 / D21
  900: *
  901:    60             CONTINUE
  902: *
  903:                END IF
  904: *
  905: *              Copy subdiagonal elements of D(K) to E(K) and
  906: *              ZERO out subdiagonal entry of A
  907: *
  908:                E( K ) = A( K+1, K )
  909:                E( K+1 ) = ZERO
  910:                A( K+1, K ) = ZERO
  911: *
  912:             END IF
  913: *
  914: *           End column K is nonsingular
  915: *
  916:          END IF
  917: *
  918: *        Store details of the interchanges in IPIV
  919: *
  920:          IF( KSTEP.EQ.1 ) THEN
  921:             IPIV( K ) = KP
  922:          ELSE
  923:             IPIV( K ) = -P
  924:             IPIV( K+1 ) = -KP
  925:          END IF
  926: *
  927: *        Increase K and return to the start of the main loop
  928: *
  929:          K = K + KSTEP
  930:          GO TO 40
  931: *
  932:    64    CONTINUE
  933: *
  934:       END IF
  935: *
  936:       RETURN
  937: *
  938: *     End of DSYTF2_RK
  939: *
  940:       END

CVSweb interface <joel.bertrand@systella.fr>