File:  [local] / rpl / lapack / lapack / dsytf2_rk.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:02 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DSYTF2_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTF2_RK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2_rk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2_rk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2_rk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), E ( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *> DSYTF2_RK computes the factorization of a real symmetric matrix A
   38: *> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
   39: *>
   40: *>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
   41: *>
   42: *> where U (or L) is unit upper (or lower) triangular matrix,
   43: *> U**T (or L**T) is the transpose of U (or L), P is a permutation
   44: *> matrix, P**T is the transpose of P, and D is symmetric and block
   45: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> For more information see Further Details section.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] UPLO
   55: *> \verbatim
   56: *>          UPLO is CHARACTER*1
   57: *>          Specifies whether the upper or lower triangular part of the
   58: *>          symmetric matrix A is stored:
   59: *>          = 'U':  Upper triangular
   60: *>          = 'L':  Lower triangular
   61: *> \endverbatim
   62: *>
   63: *> \param[in] N
   64: *> \verbatim
   65: *>          N is INTEGER
   66: *>          The order of the matrix A.  N >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in,out] A
   70: *> \verbatim
   71: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   72: *>          On entry, the symmetric matrix A.
   73: *>            If UPLO = 'U': the leading N-by-N upper triangular part
   74: *>            of A contains the upper triangular part of the matrix A,
   75: *>            and the strictly lower triangular part of A is not
   76: *>            referenced.
   77: *>
   78: *>            If UPLO = 'L': the leading N-by-N lower triangular part
   79: *>            of A contains the lower triangular part of the matrix A,
   80: *>            and the strictly upper triangular part of A is not
   81: *>            referenced.
   82: *>
   83: *>          On exit, contains:
   84: *>            a) ONLY diagonal elements of the symmetric block diagonal
   85: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
   86: *>               (superdiagonal (or subdiagonal) elements of D
   87: *>                are stored on exit in array E), and
   88: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
   89: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDA
   93: *> \verbatim
   94: *>          LDA is INTEGER
   95: *>          The leading dimension of the array A.  LDA >= max(1,N).
   96: *> \endverbatim
   97: *>
   98: *> \param[out] E
   99: *> \verbatim
  100: *>          E is DOUBLE PRECISION array, dimension (N)
  101: *>          On exit, contains the superdiagonal (or subdiagonal)
  102: *>          elements of the symmetric block diagonal matrix D
  103: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  104: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
  105: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
  106: *>
  107: *>          NOTE: For 1-by-1 diagonal block D(k), where
  108: *>          1 <= k <= N, the element E(k) is set to 0 in both
  109: *>          UPLO = 'U' or UPLO = 'L' cases.
  110: *> \endverbatim
  111: *>
  112: *> \param[out] IPIV
  113: *> \verbatim
  114: *>          IPIV is INTEGER array, dimension (N)
  115: *>          IPIV describes the permutation matrix P in the factorization
  116: *>          of matrix A as follows. The absolute value of IPIV(k)
  117: *>          represents the index of row and column that were
  118: *>          interchanged with the k-th row and column. The value of UPLO
  119: *>          describes the order in which the interchanges were applied.
  120: *>          Also, the sign of IPIV represents the block structure of
  121: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
  122: *>          diagonal blocks which correspond to 1 or 2 interchanges
  123: *>          at each factorization step. For more info see Further
  124: *>          Details section.
  125: *>
  126: *>          If UPLO = 'U',
  127: *>          ( in factorization order, k decreases from N to 1 ):
  128: *>            a) A single positive entry IPIV(k) > 0 means:
  129: *>               D(k,k) is a 1-by-1 diagonal block.
  130: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  131: *>               interchanged in the matrix A(1:N,1:N);
  132: *>               If IPIV(k) = k, no interchange occurred.
  133: *>
  134: *>            b) A pair of consecutive negative entries
  135: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
  136: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  137: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  138: *>               1) If -IPIV(k) != k, rows and columns
  139: *>                  k and -IPIV(k) were interchanged
  140: *>                  in the matrix A(1:N,1:N).
  141: *>                  If -IPIV(k) = k, no interchange occurred.
  142: *>               2) If -IPIV(k-1) != k-1, rows and columns
  143: *>                  k-1 and -IPIV(k-1) were interchanged
  144: *>                  in the matrix A(1:N,1:N).
  145: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
  146: *>
  147: *>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
  148: *>
  149: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  150: *>
  151: *>          If UPLO = 'L',
  152: *>          ( in factorization order, k increases from 1 to N ):
  153: *>            a) A single positive entry IPIV(k) > 0 means:
  154: *>               D(k,k) is a 1-by-1 diagonal block.
  155: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  156: *>               interchanged in the matrix A(1:N,1:N).
  157: *>               If IPIV(k) = k, no interchange occurred.
  158: *>
  159: *>            b) A pair of consecutive negative entries
  160: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
  161: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  162: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  163: *>               1) If -IPIV(k) != k, rows and columns
  164: *>                  k and -IPIV(k) were interchanged
  165: *>                  in the matrix A(1:N,1:N).
  166: *>                  If -IPIV(k) = k, no interchange occurred.
  167: *>               2) If -IPIV(k+1) != k+1, rows and columns
  168: *>                  k-1 and -IPIV(k-1) were interchanged
  169: *>                  in the matrix A(1:N,1:N).
  170: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
  171: *>
  172: *>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
  173: *>
  174: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0: successful exit
  181: *>
  182: *>          < 0: If INFO = -k, the k-th argument had an illegal value
  183: *>
  184: *>          > 0: If INFO = k, the matrix A is singular, because:
  185: *>                 If UPLO = 'U': column k in the upper
  186: *>                 triangular part of A contains all zeros.
  187: *>                 If UPLO = 'L': column k in the lower
  188: *>                 triangular part of A contains all zeros.
  189: *>
  190: *>               Therefore D(k,k) is exactly zero, and superdiagonal
  191: *>               elements of column k of U (or subdiagonal elements of
  192: *>               column k of L ) are all zeros. The factorization has
  193: *>               been completed, but the block diagonal matrix D is
  194: *>               exactly singular, and division by zero will occur if
  195: *>               it is used to solve a system of equations.
  196: *>
  197: *>               NOTE: INFO only stores the first occurrence of
  198: *>               a singularity, any subsequent occurrence of singularity
  199: *>               is not stored in INFO even though the factorization
  200: *>               always completes.
  201: *> \endverbatim
  202: *
  203: *  Authors:
  204: *  ========
  205: *
  206: *> \author Univ. of Tennessee
  207: *> \author Univ. of California Berkeley
  208: *> \author Univ. of Colorado Denver
  209: *> \author NAG Ltd.
  210: *
  211: *> \date December 2016
  212: *
  213: *> \ingroup doubleSYcomputational
  214: *
  215: *> \par Further Details:
  216: *  =====================
  217: *>
  218: *> \verbatim
  219: *> TODO: put further details
  220: *> \endverbatim
  221: *
  222: *> \par Contributors:
  223: *  ==================
  224: *>
  225: *> \verbatim
  226: *>
  227: *>  December 2016,  Igor Kozachenko,
  228: *>                  Computer Science Division,
  229: *>                  University of California, Berkeley
  230: *>
  231: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  232: *>                  School of Mathematics,
  233: *>                  University of Manchester
  234: *>
  235: *>  01-01-96 - Based on modifications by
  236: *>    J. Lewis, Boeing Computer Services Company
  237: *>    A. Petitet, Computer Science Dept.,
  238: *>                Univ. of Tenn., Knoxville abd , USA
  239: *> \endverbatim
  240: *
  241: *  =====================================================================
  242:       SUBROUTINE DSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
  243: *
  244: *  -- LAPACK computational routine (version 3.7.0) --
  245: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  246: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  247: *     December 2016
  248: *
  249: *     .. Scalar Arguments ..
  250:       CHARACTER          UPLO
  251:       INTEGER            INFO, LDA, N
  252: *     ..
  253: *     .. Array Arguments ..
  254:       INTEGER            IPIV( * )
  255:       DOUBLE PRECISION   A( LDA, * ), E( * )
  256: *     ..
  257: *
  258: *  =====================================================================
  259: *
  260: *     .. Parameters ..
  261:       DOUBLE PRECISION   ZERO, ONE
  262:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  263:       DOUBLE PRECISION   EIGHT, SEVTEN
  264:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  265: *     ..
  266: *     .. Local Scalars ..
  267:       LOGICAL            UPPER, DONE
  268:       INTEGER            I, IMAX, J, JMAX, ITEMP, K, KK, KP, KSTEP,
  269:      $                   P, II
  270:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
  271:      $                   ROWMAX, DTEMP, T, WK, WKM1, WKP1, SFMIN
  272: *     ..
  273: *     .. External Functions ..
  274:       LOGICAL            LSAME
  275:       INTEGER            IDAMAX
  276:       DOUBLE PRECISION   DLAMCH
  277:       EXTERNAL           LSAME, IDAMAX, DLAMCH
  278: *     ..
  279: *     .. External Subroutines ..
  280:       EXTERNAL           DSCAL, DSWAP, DSYR, XERBLA
  281: *     ..
  282: *     .. Intrinsic Functions ..
  283:       INTRINSIC          ABS, MAX, SQRT
  284: *     ..
  285: *     .. Executable Statements ..
  286: *
  287: *     Test the input parameters.
  288: *
  289:       INFO = 0
  290:       UPPER = LSAME( UPLO, 'U' )
  291:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  292:          INFO = -1
  293:       ELSE IF( N.LT.0 ) THEN
  294:          INFO = -2
  295:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  296:          INFO = -4
  297:       END IF
  298:       IF( INFO.NE.0 ) THEN
  299:          CALL XERBLA( 'DSYTF2_RK', -INFO )
  300:          RETURN
  301:       END IF
  302: *
  303: *     Initialize ALPHA for use in choosing pivot block size.
  304: *
  305:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  306: *
  307: *     Compute machine safe minimum
  308: *
  309:       SFMIN = DLAMCH( 'S' )
  310: *
  311:       IF( UPPER ) THEN
  312: *
  313: *        Factorize A as U*D*U**T using the upper triangle of A
  314: *
  315: *        Initialize the first entry of array E, where superdiagonal
  316: *        elements of D are stored
  317: *
  318:          E( 1 ) = ZERO
  319: *
  320: *        K is the main loop index, decreasing from N to 1 in steps of
  321: *        1 or 2
  322: *
  323:          K = N
  324:    10    CONTINUE
  325: *
  326: *        If K < 1, exit from loop
  327: *
  328:          IF( K.LT.1 )
  329:      $      GO TO 34
  330:          KSTEP = 1
  331:          P = K
  332: *
  333: *        Determine rows and columns to be interchanged and whether
  334: *        a 1-by-1 or 2-by-2 pivot block will be used
  335: *
  336:          ABSAKK = ABS( A( K, K ) )
  337: *
  338: *        IMAX is the row-index of the largest off-diagonal element in
  339: *        column K, and COLMAX is its absolute value.
  340: *        Determine both COLMAX and IMAX.
  341: *
  342:          IF( K.GT.1 ) THEN
  343:             IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  344:             COLMAX = ABS( A( IMAX, K ) )
  345:          ELSE
  346:             COLMAX = ZERO
  347:          END IF
  348: *
  349:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) ) THEN
  350: *
  351: *           Column K is zero or underflow: set INFO and continue
  352: *
  353:             IF( INFO.EQ.0 )
  354:      $         INFO = K
  355:             KP = K
  356: *
  357: *           Set E( K ) to zero
  358: *
  359:             IF( K.GT.1 )
  360:      $         E( K ) = ZERO
  361: *
  362:          ELSE
  363: *
  364: *           Test for interchange
  365: *
  366: *           Equivalent to testing for (used to handle NaN and Inf)
  367: *           ABSAKK.GE.ALPHA*COLMAX
  368: *
  369:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  370: *
  371: *              no interchange,
  372: *              use 1-by-1 pivot block
  373: *
  374:                KP = K
  375:             ELSE
  376: *
  377:                DONE = .FALSE.
  378: *
  379: *              Loop until pivot found
  380: *
  381:    12          CONTINUE
  382: *
  383: *                 Begin pivot search loop body
  384: *
  385: *                 JMAX is the column-index of the largest off-diagonal
  386: *                 element in row IMAX, and ROWMAX is its absolute value.
  387: *                 Determine both ROWMAX and JMAX.
  388: *
  389:                   IF( IMAX.NE.K ) THEN
  390:                      JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ),
  391:      $                                    LDA )
  392:                      ROWMAX = ABS( A( IMAX, JMAX ) )
  393:                   ELSE
  394:                      ROWMAX = ZERO
  395:                   END IF
  396: *
  397:                   IF( IMAX.GT.1 ) THEN
  398:                      ITEMP = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  399:                      DTEMP = ABS( A( ITEMP, IMAX ) )
  400:                      IF( DTEMP.GT.ROWMAX ) THEN
  401:                         ROWMAX = DTEMP
  402:                         JMAX = ITEMP
  403:                      END IF
  404:                   END IF
  405: *
  406: *                 Equivalent to testing for (used to handle NaN and Inf)
  407: *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  408: *
  409:                   IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
  410:      $            THEN
  411: *
  412: *                    interchange rows and columns K and IMAX,
  413: *                    use 1-by-1 pivot block
  414: *
  415:                      KP = IMAX
  416:                      DONE = .TRUE.
  417: *
  418: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  419: *                 used to handle NaN and Inf
  420: *
  421:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  422: *
  423: *                    interchange rows and columns K+1 and IMAX,
  424: *                    use 2-by-2 pivot block
  425: *
  426:                      KP = IMAX
  427:                      KSTEP = 2
  428:                      DONE = .TRUE.
  429:                   ELSE
  430: *
  431: *                    Pivot NOT found, set variables and repeat
  432: *
  433:                      P = IMAX
  434:                      COLMAX = ROWMAX
  435:                      IMAX = JMAX
  436:                   END IF
  437: *
  438: *                 End pivot search loop body
  439: *
  440:                IF( .NOT. DONE ) GOTO 12
  441: *
  442:             END IF
  443: *
  444: *           Swap TWO rows and TWO columns
  445: *
  446: *           First swap
  447: *
  448:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  449: *
  450: *              Interchange rows and column K and P in the leading
  451: *              submatrix A(1:k,1:k) if we have a 2-by-2 pivot
  452: *
  453:                IF( P.GT.1 )
  454:      $            CALL DSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  455:                IF( P.LT.(K-1) )
  456:      $            CALL DSWAP( K-P-1, A( P+1, K ), 1, A( P, P+1 ),
  457:      $                     LDA )
  458:                T = A( K, K )
  459:                A( K, K ) = A( P, P )
  460:                A( P, P ) = T
  461: *
  462: *              Convert upper triangle of A into U form by applying
  463: *              the interchanges in columns k+1:N.
  464: *
  465:                IF( K.LT.N )
  466:      $            CALL DSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ), LDA )
  467: *
  468:             END IF
  469: *
  470: *           Second swap
  471: *
  472:             KK = K - KSTEP + 1
  473:             IF( KP.NE.KK ) THEN
  474: *
  475: *              Interchange rows and columns KK and KP in the leading
  476: *              submatrix A(1:k,1:k)
  477: *
  478:                IF( KP.GT.1 )
  479:      $            CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  480:                IF( ( KK.GT.1 ) .AND. ( KP.LT.(KK-1) ) )
  481:      $            CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  482:      $                     LDA )
  483:                T = A( KK, KK )
  484:                A( KK, KK ) = A( KP, KP )
  485:                A( KP, KP ) = T
  486:                IF( KSTEP.EQ.2 ) THEN
  487:                   T = A( K-1, K )
  488:                   A( K-1, K ) = A( KP, K )
  489:                   A( KP, K ) = T
  490:                END IF
  491: *
  492: *              Convert upper triangle of A into U form by applying
  493: *              the interchanges in columns k+1:N.
  494: *
  495:                IF( K.LT.N )
  496:      $            CALL DSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  497:      $                        LDA )
  498: *
  499:             END IF
  500: *
  501: *           Update the leading submatrix
  502: *
  503:             IF( KSTEP.EQ.1 ) THEN
  504: *
  505: *              1-by-1 pivot block D(k): column k now holds
  506: *
  507: *              W(k) = U(k)*D(k)
  508: *
  509: *              where U(k) is the k-th column of U
  510: *
  511:                IF( K.GT.1 ) THEN
  512: *
  513: *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
  514: *                 store U(k) in column k
  515: *
  516:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  517: *
  518: *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
  519: *                    A := A - U(k)*D(k)*U(k)**T
  520: *                       = A - W(k)*1/D(k)*W(k)**T
  521: *
  522:                      D11 = ONE / A( K, K )
  523:                      CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  524: *
  525: *                    Store U(k) in column k
  526: *
  527:                      CALL DSCAL( K-1, D11, A( 1, K ), 1 )
  528:                   ELSE
  529: *
  530: *                    Store L(k) in column K
  531: *
  532:                      D11 = A( K, K )
  533:                      DO 16 II = 1, K - 1
  534:                         A( II, K ) = A( II, K ) / D11
  535:    16                CONTINUE
  536: *
  537: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  538: *                    A := A - U(k)*D(k)*U(k)**T
  539: *                       = A - W(k)*(1/D(k))*W(k)**T
  540: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  541: *
  542:                      CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  543:                   END IF
  544: *
  545: *                 Store the superdiagonal element of D in array E
  546: *
  547:                   E( K ) = ZERO
  548: *
  549:                END IF
  550: *
  551:             ELSE
  552: *
  553: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  554: *
  555: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  556: *
  557: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  558: *              of U
  559: *
  560: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  561: *
  562: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  563: *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
  564: *
  565: *              and store L(k) and L(k+1) in columns k and k+1
  566: *
  567:                IF( K.GT.2 ) THEN
  568: *
  569:                   D12 = A( K-1, K )
  570:                   D22 = A( K-1, K-1 ) / D12
  571:                   D11 = A( K, K ) / D12
  572:                   T = ONE / ( D11*D22-ONE )
  573: *
  574:                   DO 30 J = K - 2, 1, -1
  575: *
  576:                      WKM1 = T*( D11*A( J, K-1 )-A( J, K ) )
  577:                      WK = T*( D22*A( J, K )-A( J, K-1 ) )
  578: *
  579:                      DO 20 I = J, 1, -1
  580:                         A( I, J ) = A( I, J ) - (A( I, K ) / D12 )*WK -
  581:      $                              ( A( I, K-1 ) / D12 )*WKM1
  582:    20                CONTINUE
  583: *
  584: *                    Store U(k) and U(k-1) in cols k and k-1 for row J
  585: *
  586:                      A( J, K ) = WK / D12
  587:                      A( J, K-1 ) = WKM1 / D12
  588: *
  589:    30             CONTINUE
  590: *
  591:                END IF
  592: *
  593: *              Copy superdiagonal elements of D(K) to E(K) and
  594: *              ZERO out superdiagonal entry of A
  595: *
  596:                E( K ) = A( K-1, K )
  597:                E( K-1 ) = ZERO
  598:                A( K-1, K ) = ZERO
  599: *
  600:             END IF
  601: *
  602: *           End column K is nonsingular
  603: *
  604:          END IF
  605: *
  606: *        Store details of the interchanges in IPIV
  607: *
  608:          IF( KSTEP.EQ.1 ) THEN
  609:             IPIV( K ) = KP
  610:          ELSE
  611:             IPIV( K ) = -P
  612:             IPIV( K-1 ) = -KP
  613:          END IF
  614: *
  615: *        Decrease K and return to the start of the main loop
  616: *
  617:          K = K - KSTEP
  618:          GO TO 10
  619: *
  620:    34    CONTINUE
  621: *
  622:       ELSE
  623: *
  624: *        Factorize A as L*D*L**T using the lower triangle of A
  625: *
  626: *        Initialize the unused last entry of the subdiagonal array E.
  627: *
  628:          E( N ) = ZERO
  629: *
  630: *        K is the main loop index, increasing from 1 to N in steps of
  631: *        1 or 2
  632: *
  633:          K = 1
  634:    40    CONTINUE
  635: *
  636: *        If K > N, exit from loop
  637: *
  638:          IF( K.GT.N )
  639:      $      GO TO 64
  640:          KSTEP = 1
  641:          P = K
  642: *
  643: *        Determine rows and columns to be interchanged and whether
  644: *        a 1-by-1 or 2-by-2 pivot block will be used
  645: *
  646:          ABSAKK = ABS( A( K, K ) )
  647: *
  648: *        IMAX is the row-index of the largest off-diagonal element in
  649: *        column K, and COLMAX is its absolute value.
  650: *        Determine both COLMAX and IMAX.
  651: *
  652:          IF( K.LT.N ) THEN
  653:             IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  654:             COLMAX = ABS( A( IMAX, K ) )
  655:          ELSE
  656:             COLMAX = ZERO
  657:          END IF
  658: *
  659:          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
  660: *
  661: *           Column K is zero or underflow: set INFO and continue
  662: *
  663:             IF( INFO.EQ.0 )
  664:      $         INFO = K
  665:             KP = K
  666: *
  667: *           Set E( K ) to zero
  668: *
  669:             IF( K.LT.N )
  670:      $         E( K ) = ZERO
  671: *
  672:          ELSE
  673: *
  674: *           Test for interchange
  675: *
  676: *           Equivalent to testing for (used to handle NaN and Inf)
  677: *           ABSAKK.GE.ALPHA*COLMAX
  678: *
  679:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  680: *
  681: *              no interchange, use 1-by-1 pivot block
  682: *
  683:                KP = K
  684: *
  685:             ELSE
  686: *
  687:                DONE = .FALSE.
  688: *
  689: *              Loop until pivot found
  690: *
  691:    42          CONTINUE
  692: *
  693: *                 Begin pivot search loop body
  694: *
  695: *                 JMAX is the column-index of the largest off-diagonal
  696: *                 element in row IMAX, and ROWMAX is its absolute value.
  697: *                 Determine both ROWMAX and JMAX.
  698: *
  699:                   IF( IMAX.NE.K ) THEN
  700:                      JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  701:                      ROWMAX = ABS( A( IMAX, JMAX ) )
  702:                   ELSE
  703:                      ROWMAX = ZERO
  704:                   END IF
  705: *
  706:                   IF( IMAX.LT.N ) THEN
  707:                      ITEMP = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ),
  708:      $                                     1 )
  709:                      DTEMP = ABS( A( ITEMP, IMAX ) )
  710:                      IF( DTEMP.GT.ROWMAX ) THEN
  711:                         ROWMAX = DTEMP
  712:                         JMAX = ITEMP
  713:                      END IF
  714:                   END IF
  715: *
  716: *                 Equivalent to testing for (used to handle NaN and Inf)
  717: *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  718: *
  719:                   IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
  720:      $            THEN
  721: *
  722: *                    interchange rows and columns K and IMAX,
  723: *                    use 1-by-1 pivot block
  724: *
  725:                      KP = IMAX
  726:                      DONE = .TRUE.
  727: *
  728: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  729: *                 used to handle NaN and Inf
  730: *
  731:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  732: *
  733: *                    interchange rows and columns K+1 and IMAX,
  734: *                    use 2-by-2 pivot block
  735: *
  736:                      KP = IMAX
  737:                      KSTEP = 2
  738:                      DONE = .TRUE.
  739:                   ELSE
  740: *
  741: *                    Pivot NOT found, set variables and repeat
  742: *
  743:                      P = IMAX
  744:                      COLMAX = ROWMAX
  745:                      IMAX = JMAX
  746:                   END IF
  747: *
  748: *                 End pivot search loop body
  749: *
  750:                IF( .NOT. DONE ) GOTO 42
  751: *
  752:             END IF
  753: *
  754: *           Swap TWO rows and TWO columns
  755: *
  756: *           First swap
  757: *
  758:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  759: *
  760: *              Interchange rows and column K and P in the trailing
  761: *              submatrix A(k:n,k:n) if we have a 2-by-2 pivot
  762: *
  763:                IF( P.LT.N )
  764:      $            CALL DSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  765:                IF( P.GT.(K+1) )
  766:      $            CALL DSWAP( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
  767:                T = A( K, K )
  768:                A( K, K ) = A( P, P )
  769:                A( P, P ) = T
  770: *
  771: *              Convert lower triangle of A into L form by applying
  772: *              the interchanges in columns 1:k-1.
  773: *
  774:                IF ( K.GT.1 )
  775:      $            CALL DSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
  776: *
  777:             END IF
  778: *
  779: *           Second swap
  780: *
  781:             KK = K + KSTEP - 1
  782:             IF( KP.NE.KK ) THEN
  783: *
  784: *              Interchange rows and columns KK and KP in the trailing
  785: *              submatrix A(k:n,k:n)
  786: *
  787:                IF( KP.LT.N )
  788:      $            CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  789:                IF( ( KK.LT.N ) .AND. ( KP.GT.(KK+1) ) )
  790:      $            CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  791:      $                     LDA )
  792:                T = A( KK, KK )
  793:                A( KK, KK ) = A( KP, KP )
  794:                A( KP, KP ) = T
  795:                IF( KSTEP.EQ.2 ) THEN
  796:                   T = A( K+1, K )
  797:                   A( K+1, K ) = A( KP, K )
  798:                   A( KP, K ) = T
  799:                END IF
  800: *
  801: *              Convert lower triangle of A into L form by applying
  802: *              the interchanges in columns 1:k-1.
  803: *
  804:                IF ( K.GT.1 )
  805:      $            CALL DSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  806: *
  807:             END IF
  808: *
  809: *           Update the trailing submatrix
  810: *
  811:             IF( KSTEP.EQ.1 ) THEN
  812: *
  813: *              1-by-1 pivot block D(k): column k now holds
  814: *
  815: *              W(k) = L(k)*D(k)
  816: *
  817: *              where L(k) is the k-th column of L
  818: *
  819:                IF( K.LT.N ) THEN
  820: *
  821: *              Perform a rank-1 update of A(k+1:n,k+1:n) and
  822: *              store L(k) in column k
  823: *
  824:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  825: *
  826: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  827: *                    A := A - L(k)*D(k)*L(k)**T
  828: *                       = A - W(k)*(1/D(k))*W(k)**T
  829: *
  830:                      D11 = ONE / A( K, K )
  831:                      CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  832:      $                          A( K+1, K+1 ), LDA )
  833: *
  834: *                    Store L(k) in column k
  835: *
  836:                      CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  837:                   ELSE
  838: *
  839: *                    Store L(k) in column k
  840: *
  841:                      D11 = A( K, K )
  842:                      DO 46 II = K + 1, N
  843:                         A( II, K ) = A( II, K ) / D11
  844:    46                CONTINUE
  845: *
  846: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  847: *                    A := A - L(k)*D(k)*L(k)**T
  848: *                       = A - W(k)*(1/D(k))*W(k)**T
  849: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  850: *
  851:                      CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  852:      $                          A( K+1, K+1 ), LDA )
  853:                   END IF
  854: *
  855: *                 Store the subdiagonal element of D in array E
  856: *
  857:                   E( K ) = ZERO
  858: *
  859:                END IF
  860: *
  861:             ELSE
  862: *
  863: *              2-by-2 pivot block D(k): columns k and k+1 now hold
  864: *
  865: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  866: *
  867: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  868: *              of L
  869: *
  870: *
  871: *              Perform a rank-2 update of A(k+2:n,k+2:n) as
  872: *
  873: *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
  874: *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
  875: *
  876: *              and store L(k) and L(k+1) in columns k and k+1
  877: *
  878:                IF( K.LT.N-1 ) THEN
  879: *
  880:                   D21 = A( K+1, K )
  881:                   D11 = A( K+1, K+1 ) / D21
  882:                   D22 = A( K, K ) / D21
  883:                   T = ONE / ( D11*D22-ONE )
  884: *
  885:                   DO 60 J = K + 2, N
  886: *
  887: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  888: *
  889:                      WK = T*( D11*A( J, K )-A( J, K+1 ) )
  890:                      WKP1 = T*( D22*A( J, K+1 )-A( J, K ) )
  891: *
  892: *                    Perform a rank-2 update of A(k+2:n,k+2:n)
  893: *
  894:                      DO 50 I = J, N
  895:                         A( I, J ) = A( I, J ) - ( A( I, K ) / D21 )*WK -
  896:      $                              ( A( I, K+1 ) / D21 )*WKP1
  897:    50                CONTINUE
  898: *
  899: *                    Store L(k) and L(k+1) in cols k and k+1 for row J
  900: *
  901:                      A( J, K ) = WK / D21
  902:                      A( J, K+1 ) = WKP1 / D21
  903: *
  904:    60             CONTINUE
  905: *
  906:                END IF
  907: *
  908: *              Copy subdiagonal elements of D(K) to E(K) and
  909: *              ZERO out subdiagonal entry of A
  910: *
  911:                E( K ) = A( K+1, K )
  912:                E( K+1 ) = ZERO
  913:                A( K+1, K ) = ZERO
  914: *
  915:             END IF
  916: *
  917: *           End column K is nonsingular
  918: *
  919:          END IF
  920: *
  921: *        Store details of the interchanges in IPIV
  922: *
  923:          IF( KSTEP.EQ.1 ) THEN
  924:             IPIV( K ) = KP
  925:          ELSE
  926:             IPIV( K ) = -P
  927:             IPIV( K+1 ) = -KP
  928:          END IF
  929: *
  930: *        Increase K and return to the start of the main loop
  931: *
  932:          K = K + KSTEP
  933:          GO TO 40
  934: *
  935:    64    CONTINUE
  936: *
  937:       END IF
  938: *
  939:       RETURN
  940: *
  941: *     End of DSYTF2_RK
  942: *
  943:       END

CVSweb interface <joel.bertrand@systella.fr>