File:  [local] / rpl / lapack / lapack / dsytf2.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:41 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b DSYTF2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSYTF2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYTF2 computes the factorization of a real symmetric matrix A using
   39: *> the Bunch-Kaufman diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**T  or  A = L*D*L**T
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, U**T is the transpose of U, and D is symmetric and
   45: *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          symmetric matrix A is stored:
   58: *>          = 'U':  Upper triangular
   59: *>          = 'L':  Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   71: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   72: *>          n-by-n upper triangular part of A contains the upper
   73: *>          triangular part of the matrix A, and the strictly lower
   74: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *>          leading n-by-n lower triangular part of A contains the lower
   76: *>          triangular part of the matrix A, and the strictly upper
   77: *>          triangular part of A is not referenced.
   78: *>
   79: *>          On exit, the block diagonal matrix D and the multipliers used
   80: *>          to obtain the factor U or L (see below for further details).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D.
   93: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   94: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
   95: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   96: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   97: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   98: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   99: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  100: *> \endverbatim
  101: *>
  102: *> \param[out] INFO
  103: *> \verbatim
  104: *>          INFO is INTEGER
  105: *>          = 0: successful exit
  106: *>          < 0: if INFO = -k, the k-th argument had an illegal value
  107: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  108: *>               has been completed, but the block diagonal matrix D is
  109: *>               exactly singular, and division by zero will occur if it
  110: *>               is used to solve a system of equations.
  111: *> \endverbatim
  112: *
  113: *  Authors:
  114: *  ========
  115: *
  116: *> \author Univ. of Tennessee 
  117: *> \author Univ. of California Berkeley 
  118: *> \author Univ. of Colorado Denver 
  119: *> \author NAG Ltd. 
  120: *
  121: *> \date November 2011
  122: *
  123: *> \ingroup doubleSYcomputational
  124: *
  125: *> \par Further Details:
  126: *  =====================
  127: *>
  128: *> \verbatim
  129: *>
  130: *>  If UPLO = 'U', then A = U*D*U**T, where
  131: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  132: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  133: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  134: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  135: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  136: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  137: *>
  138: *>             (   I    v    0   )   k-s
  139: *>     U(k) =  (   0    I    0   )   s
  140: *>             (   0    0    I   )   n-k
  141: *>                k-s   s   n-k
  142: *>
  143: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  144: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  145: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  146: *>
  147: *>  If UPLO = 'L', then A = L*D*L**T, where
  148: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  149: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  150: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  151: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  152: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  153: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  154: *>
  155: *>             (   I    0     0   )  k-1
  156: *>     L(k) =  (   0    I     0   )  s
  157: *>             (   0    v     I   )  n-k-s+1
  158: *>                k-1   s  n-k-s+1
  159: *>
  160: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  161: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  162: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  163: *> \endverbatim
  164: *
  165: *> \par Contributors:
  166: *  ==================
  167: *>
  168: *> \verbatim
  169: *>
  170: *>  09-29-06 - patch from
  171: *>    Bobby Cheng, MathWorks
  172: *>
  173: *>    Replace l.204 and l.372
  174: *>         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  175: *>    by
  176: *>         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  177: *>
  178: *>  01-01-96 - Based on modifications by
  179: *>    J. Lewis, Boeing Computer Services Company
  180: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  181: *>  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
  182: *>         Company
  183: *> \endverbatim
  184: *
  185: *  =====================================================================
  186:       SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  187: *
  188: *  -- LAPACK computational routine (version 3.4.0) --
  189: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  191: *     November 2011
  192: *
  193: *     .. Scalar Arguments ..
  194:       CHARACTER          UPLO
  195:       INTEGER            INFO, LDA, N
  196: *     ..
  197: *     .. Array Arguments ..
  198:       INTEGER            IPIV( * )
  199:       DOUBLE PRECISION   A( LDA, * )
  200: *     ..
  201: *
  202: *  =====================================================================
  203: *
  204: *     .. Parameters ..
  205:       DOUBLE PRECISION   ZERO, ONE
  206:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  207:       DOUBLE PRECISION   EIGHT, SEVTEN
  208:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  209: *     ..
  210: *     .. Local Scalars ..
  211:       LOGICAL            UPPER
  212:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
  213:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  214:      $                   ROWMAX, T, WK, WKM1, WKP1
  215: *     ..
  216: *     .. External Functions ..
  217:       LOGICAL            LSAME, DISNAN
  218:       INTEGER            IDAMAX
  219:       EXTERNAL           LSAME, IDAMAX, DISNAN
  220: *     ..
  221: *     .. External Subroutines ..
  222:       EXTERNAL           DSCAL, DSWAP, DSYR, XERBLA
  223: *     ..
  224: *     .. Intrinsic Functions ..
  225:       INTRINSIC          ABS, MAX, SQRT
  226: *     ..
  227: *     .. Executable Statements ..
  228: *
  229: *     Test the input parameters.
  230: *
  231:       INFO = 0
  232:       UPPER = LSAME( UPLO, 'U' )
  233:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  234:          INFO = -1
  235:       ELSE IF( N.LT.0 ) THEN
  236:          INFO = -2
  237:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  238:          INFO = -4
  239:       END IF
  240:       IF( INFO.NE.0 ) THEN
  241:          CALL XERBLA( 'DSYTF2', -INFO )
  242:          RETURN
  243:       END IF
  244: *
  245: *     Initialize ALPHA for use in choosing pivot block size.
  246: *
  247:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  248: *
  249:       IF( UPPER ) THEN
  250: *
  251: *        Factorize A as U*D*U**T using the upper triangle of A
  252: *
  253: *        K is the main loop index, decreasing from N to 1 in steps of
  254: *        1 or 2
  255: *
  256:          K = N
  257:    10    CONTINUE
  258: *
  259: *        If K < 1, exit from loop
  260: *
  261:          IF( K.LT.1 )
  262:      $      GO TO 70
  263:          KSTEP = 1
  264: *
  265: *        Determine rows and columns to be interchanged and whether
  266: *        a 1-by-1 or 2-by-2 pivot block will be used
  267: *
  268:          ABSAKK = ABS( A( K, K ) )
  269: *
  270: *        IMAX is the row-index of the largest off-diagonal element in
  271: *        column K, and COLMAX is its absolute value
  272: *
  273:          IF( K.GT.1 ) THEN
  274:             IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  275:             COLMAX = ABS( A( IMAX, K ) )
  276:          ELSE
  277:             COLMAX = ZERO
  278:          END IF
  279: *
  280:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  281: *
  282: *           Column K is zero or contains a NaN: set INFO and continue
  283: *
  284:             IF( INFO.EQ.0 )
  285:      $         INFO = K
  286:             KP = K
  287:          ELSE
  288:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  289: *
  290: *              no interchange, use 1-by-1 pivot block
  291: *
  292:                KP = K
  293:             ELSE
  294: *
  295: *              JMAX is the column-index of the largest off-diagonal
  296: *              element in row IMAX, and ROWMAX is its absolute value
  297: *
  298:                JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  299:                ROWMAX = ABS( A( IMAX, JMAX ) )
  300:                IF( IMAX.GT.1 ) THEN
  301:                   JMAX = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  302:                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  303:                END IF
  304: *
  305:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  306: *
  307: *                 no interchange, use 1-by-1 pivot block
  308: *
  309:                   KP = K
  310:                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  311: *
  312: *                 interchange rows and columns K and IMAX, use 1-by-1
  313: *                 pivot block
  314: *
  315:                   KP = IMAX
  316:                ELSE
  317: *
  318: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  319: *                 pivot block
  320: *
  321:                   KP = IMAX
  322:                   KSTEP = 2
  323:                END IF
  324:             END IF
  325: *
  326:             KK = K - KSTEP + 1
  327:             IF( KP.NE.KK ) THEN
  328: *
  329: *              Interchange rows and columns KK and KP in the leading
  330: *              submatrix A(1:k,1:k)
  331: *
  332:                CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  333:                CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  334:      $                     LDA )
  335:                T = A( KK, KK )
  336:                A( KK, KK ) = A( KP, KP )
  337:                A( KP, KP ) = T
  338:                IF( KSTEP.EQ.2 ) THEN
  339:                   T = A( K-1, K )
  340:                   A( K-1, K ) = A( KP, K )
  341:                   A( KP, K ) = T
  342:                END IF
  343:             END IF
  344: *
  345: *           Update the leading submatrix
  346: *
  347:             IF( KSTEP.EQ.1 ) THEN
  348: *
  349: *              1-by-1 pivot block D(k): column k now holds
  350: *
  351: *              W(k) = U(k)*D(k)
  352: *
  353: *              where U(k) is the k-th column of U
  354: *
  355: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  356: *
  357: *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  358: *
  359:                R1 = ONE / A( K, K )
  360:                CALL DSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  361: *
  362: *              Store U(k) in column k
  363: *
  364:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  365:             ELSE
  366: *
  367: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  368: *
  369: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  370: *
  371: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  372: *              of U
  373: *
  374: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  375: *
  376: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  377: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  378: *
  379:                IF( K.GT.2 ) THEN
  380: *
  381:                   D12 = A( K-1, K )
  382:                   D22 = A( K-1, K-1 ) / D12
  383:                   D11 = A( K, K ) / D12
  384:                   T = ONE / ( D11*D22-ONE )
  385:                   D12 = T / D12
  386: *
  387:                   DO 30 J = K - 2, 1, -1
  388:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  389:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  390:                      DO 20 I = J, 1, -1
  391:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  392:      $                              A( I, K-1 )*WKM1
  393:    20                CONTINUE
  394:                      A( J, K ) = WK
  395:                      A( J, K-1 ) = WKM1
  396:    30             CONTINUE
  397: *
  398:                END IF
  399: *
  400:             END IF
  401:          END IF
  402: *
  403: *        Store details of the interchanges in IPIV
  404: *
  405:          IF( KSTEP.EQ.1 ) THEN
  406:             IPIV( K ) = KP
  407:          ELSE
  408:             IPIV( K ) = -KP
  409:             IPIV( K-1 ) = -KP
  410:          END IF
  411: *
  412: *        Decrease K and return to the start of the main loop
  413: *
  414:          K = K - KSTEP
  415:          GO TO 10
  416: *
  417:       ELSE
  418: *
  419: *        Factorize A as L*D*L**T using the lower triangle of A
  420: *
  421: *        K is the main loop index, increasing from 1 to N in steps of
  422: *        1 or 2
  423: *
  424:          K = 1
  425:    40    CONTINUE
  426: *
  427: *        If K > N, exit from loop
  428: *
  429:          IF( K.GT.N )
  430:      $      GO TO 70
  431:          KSTEP = 1
  432: *
  433: *        Determine rows and columns to be interchanged and whether
  434: *        a 1-by-1 or 2-by-2 pivot block will be used
  435: *
  436:          ABSAKK = ABS( A( K, K ) )
  437: *
  438: *        IMAX is the row-index of the largest off-diagonal element in
  439: *        column K, and COLMAX is its absolute value
  440: *
  441:          IF( K.LT.N ) THEN
  442:             IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  443:             COLMAX = ABS( A( IMAX, K ) )
  444:          ELSE
  445:             COLMAX = ZERO
  446:          END IF
  447: *
  448:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  449: *
  450: *           Column K is zero or contains a NaN: set INFO and continue
  451: *
  452:             IF( INFO.EQ.0 )
  453:      $         INFO = K
  454:             KP = K
  455:          ELSE
  456:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  457: *
  458: *              no interchange, use 1-by-1 pivot block
  459: *
  460:                KP = K
  461:             ELSE
  462: *
  463: *              JMAX is the column-index of the largest off-diagonal
  464: *              element in row IMAX, and ROWMAX is its absolute value
  465: *
  466:                JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  467:                ROWMAX = ABS( A( IMAX, JMAX ) )
  468:                IF( IMAX.LT.N ) THEN
  469:                   JMAX = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  470:                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  471:                END IF
  472: *
  473:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  474: *
  475: *                 no interchange, use 1-by-1 pivot block
  476: *
  477:                   KP = K
  478:                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  479: *
  480: *                 interchange rows and columns K and IMAX, use 1-by-1
  481: *                 pivot block
  482: *
  483:                   KP = IMAX
  484:                ELSE
  485: *
  486: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  487: *                 pivot block
  488: *
  489:                   KP = IMAX
  490:                   KSTEP = 2
  491:                END IF
  492:             END IF
  493: *
  494:             KK = K + KSTEP - 1
  495:             IF( KP.NE.KK ) THEN
  496: *
  497: *              Interchange rows and columns KK and KP in the trailing
  498: *              submatrix A(k:n,k:n)
  499: *
  500:                IF( KP.LT.N )
  501:      $            CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  502:                CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  503:      $                     LDA )
  504:                T = A( KK, KK )
  505:                A( KK, KK ) = A( KP, KP )
  506:                A( KP, KP ) = T
  507:                IF( KSTEP.EQ.2 ) THEN
  508:                   T = A( K+1, K )
  509:                   A( K+1, K ) = A( KP, K )
  510:                   A( KP, K ) = T
  511:                END IF
  512:             END IF
  513: *
  514: *           Update the trailing submatrix
  515: *
  516:             IF( KSTEP.EQ.1 ) THEN
  517: *
  518: *              1-by-1 pivot block D(k): column k now holds
  519: *
  520: *              W(k) = L(k)*D(k)
  521: *
  522: *              where L(k) is the k-th column of L
  523: *
  524:                IF( K.LT.N ) THEN
  525: *
  526: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  527: *
  528: *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  529: *
  530:                   D11 = ONE / A( K, K )
  531:                   CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  532:      $                       A( K+1, K+1 ), LDA )
  533: *
  534: *                 Store L(k) in column K
  535: *
  536:                   CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  537:                END IF
  538:             ELSE
  539: *
  540: *              2-by-2 pivot block D(k)
  541: *
  542:                IF( K.LT.N-1 ) THEN
  543: *
  544: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  545: *
  546: *                 A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))**T
  547: *
  548: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  549: *                 columns of L
  550: *
  551:                   D21 = A( K+1, K )
  552:                   D11 = A( K+1, K+1 ) / D21
  553:                   D22 = A( K, K ) / D21
  554:                   T = ONE / ( D11*D22-ONE )
  555:                   D21 = T / D21
  556: *
  557:                   DO 60 J = K + 2, N
  558: *
  559:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  560:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  561: *
  562:                      DO 50 I = J, N
  563:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  564:      $                              A( I, K+1 )*WKP1
  565:    50                CONTINUE
  566: *
  567:                      A( J, K ) = WK
  568:                      A( J, K+1 ) = WKP1
  569: *
  570:    60             CONTINUE
  571:                END IF
  572:             END IF
  573:          END IF
  574: *
  575: *        Store details of the interchanges in IPIV
  576: *
  577:          IF( KSTEP.EQ.1 ) THEN
  578:             IPIV( K ) = KP
  579:          ELSE
  580:             IPIV( K ) = -KP
  581:             IPIV( K+1 ) = -KP
  582:          END IF
  583: *
  584: *        Increase K and return to the start of the main loop
  585: *
  586:          K = K + KSTEP
  587:          GO TO 40
  588: *
  589:       END IF
  590: *
  591:    70 CONTINUE
  592: *
  593:       RETURN
  594: *
  595: *     End of DSYTF2
  596: *
  597:       END

CVSweb interface <joel.bertrand@systella.fr>