File:  [local] / rpl / lapack / lapack / dsytf2.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 4 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, LDA, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       DOUBLE PRECISION   A( LDA, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DSYTF2 computes the factorization of a real symmetric matrix A using
   21: *  the Bunch-Kaufman diagonal pivoting method:
   22: *
   23: *     A = U*D*U'  or  A = L*D*L'
   24: *
   25: *  where U (or L) is a product of permutation and unit upper (lower)
   26: *  triangular matrices, U' is the transpose of U, and D is symmetric and
   27: *  block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   28: *
   29: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *  UPLO    (input) CHARACTER*1
   35: *          Specifies whether the upper or lower triangular part of the
   36: *          symmetric matrix A is stored:
   37: *          = 'U':  Upper triangular
   38: *          = 'L':  Lower triangular
   39: *
   40: *  N       (input) INTEGER
   41: *          The order of the matrix A.  N >= 0.
   42: *
   43: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   44: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   45: *          n-by-n upper triangular part of A contains the upper
   46: *          triangular part of the matrix A, and the strictly lower
   47: *          triangular part of A is not referenced.  If UPLO = 'L', the
   48: *          leading n-by-n lower triangular part of A contains the lower
   49: *          triangular part of the matrix A, and the strictly upper
   50: *          triangular part of A is not referenced.
   51: *
   52: *          On exit, the block diagonal matrix D and the multipliers used
   53: *          to obtain the factor U or L (see below for further details).
   54: *
   55: *  LDA     (input) INTEGER
   56: *          The leading dimension of the array A.  LDA >= max(1,N).
   57: *
   58: *  IPIV    (output) INTEGER array, dimension (N)
   59: *          Details of the interchanges and the block structure of D.
   60: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   61: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
   62: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   63: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   64: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   65: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   66: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   67: *
   68: *  INFO    (output) INTEGER
   69: *          = 0: successful exit
   70: *          < 0: if INFO = -k, the k-th argument had an illegal value
   71: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
   72: *               has been completed, but the block diagonal matrix D is
   73: *               exactly singular, and division by zero will occur if it
   74: *               is used to solve a system of equations.
   75: *
   76: *  Further Details
   77: *  ===============
   78: *
   79: *  09-29-06 - patch from
   80: *    Bobby Cheng, MathWorks
   81: *
   82: *    Replace l.204 and l.372
   83: *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
   84: *    by
   85: *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
   86: *
   87: *  01-01-96 - Based on modifications by
   88: *    J. Lewis, Boeing Computer Services Company
   89: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
   90: *  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
   91: *         Company
   92: *
   93: *  If UPLO = 'U', then A = U*D*U', where
   94: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
   95: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
   96: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
   97: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
   98: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
   99: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  100: *
  101: *             (   I    v    0   )   k-s
  102: *     U(k) =  (   0    I    0   )   s
  103: *             (   0    0    I   )   n-k
  104: *                k-s   s   n-k
  105: *
  106: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  107: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  108: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  109: *
  110: *  If UPLO = 'L', then A = L*D*L', where
  111: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  112: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  113: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  114: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  115: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  116: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  117: *
  118: *             (   I    0     0   )  k-1
  119: *     L(k) =  (   0    I     0   )  s
  120: *             (   0    v     I   )  n-k-s+1
  121: *                k-1   s  n-k-s+1
  122: *
  123: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  124: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  125: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  126: *
  127: *  =====================================================================
  128: *
  129: *     .. Parameters ..
  130:       DOUBLE PRECISION   ZERO, ONE
  131:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  132:       DOUBLE PRECISION   EIGHT, SEVTEN
  133:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  134: *     ..
  135: *     .. Local Scalars ..
  136:       LOGICAL            UPPER
  137:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
  138:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  139:      $                   ROWMAX, T, WK, WKM1, WKP1
  140: *     ..
  141: *     .. External Functions ..
  142:       LOGICAL            LSAME, DISNAN
  143:       INTEGER            IDAMAX
  144:       EXTERNAL           LSAME, IDAMAX, DISNAN
  145: *     ..
  146: *     .. External Subroutines ..
  147:       EXTERNAL           DSCAL, DSWAP, DSYR, XERBLA
  148: *     ..
  149: *     .. Intrinsic Functions ..
  150:       INTRINSIC          ABS, MAX, SQRT
  151: *     ..
  152: *     .. Executable Statements ..
  153: *
  154: *     Test the input parameters.
  155: *
  156:       INFO = 0
  157:       UPPER = LSAME( UPLO, 'U' )
  158:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  159:          INFO = -1
  160:       ELSE IF( N.LT.0 ) THEN
  161:          INFO = -2
  162:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  163:          INFO = -4
  164:       END IF
  165:       IF( INFO.NE.0 ) THEN
  166:          CALL XERBLA( 'DSYTF2', -INFO )
  167:          RETURN
  168:       END IF
  169: *
  170: *     Initialize ALPHA for use in choosing pivot block size.
  171: *
  172:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  173: *
  174:       IF( UPPER ) THEN
  175: *
  176: *        Factorize A as U*D*U' using the upper triangle of A
  177: *
  178: *        K is the main loop index, decreasing from N to 1 in steps of
  179: *        1 or 2
  180: *
  181:          K = N
  182:    10    CONTINUE
  183: *
  184: *        If K < 1, exit from loop
  185: *
  186:          IF( K.LT.1 )
  187:      $      GO TO 70
  188:          KSTEP = 1
  189: *
  190: *        Determine rows and columns to be interchanged and whether
  191: *        a 1-by-1 or 2-by-2 pivot block will be used
  192: *
  193:          ABSAKK = ABS( A( K, K ) )
  194: *
  195: *        IMAX is the row-index of the largest off-diagonal element in
  196: *        column K, and COLMAX is its absolute value
  197: *
  198:          IF( K.GT.1 ) THEN
  199:             IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  200:             COLMAX = ABS( A( IMAX, K ) )
  201:          ELSE
  202:             COLMAX = ZERO
  203:          END IF
  204: *
  205:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  206: *
  207: *           Column K is zero or contains a NaN: set INFO and continue
  208: *
  209:             IF( INFO.EQ.0 )
  210:      $         INFO = K
  211:             KP = K
  212:          ELSE
  213:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  214: *
  215: *              no interchange, use 1-by-1 pivot block
  216: *
  217:                KP = K
  218:             ELSE
  219: *
  220: *              JMAX is the column-index of the largest off-diagonal
  221: *              element in row IMAX, and ROWMAX is its absolute value
  222: *
  223:                JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  224:                ROWMAX = ABS( A( IMAX, JMAX ) )
  225:                IF( IMAX.GT.1 ) THEN
  226:                   JMAX = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  227:                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  228:                END IF
  229: *
  230:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  231: *
  232: *                 no interchange, use 1-by-1 pivot block
  233: *
  234:                   KP = K
  235:                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  236: *
  237: *                 interchange rows and columns K and IMAX, use 1-by-1
  238: *                 pivot block
  239: *
  240:                   KP = IMAX
  241:                ELSE
  242: *
  243: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  244: *                 pivot block
  245: *
  246:                   KP = IMAX
  247:                   KSTEP = 2
  248:                END IF
  249:             END IF
  250: *
  251:             KK = K - KSTEP + 1
  252:             IF( KP.NE.KK ) THEN
  253: *
  254: *              Interchange rows and columns KK and KP in the leading
  255: *              submatrix A(1:k,1:k)
  256: *
  257:                CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  258:                CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  259:      $                     LDA )
  260:                T = A( KK, KK )
  261:                A( KK, KK ) = A( KP, KP )
  262:                A( KP, KP ) = T
  263:                IF( KSTEP.EQ.2 ) THEN
  264:                   T = A( K-1, K )
  265:                   A( K-1, K ) = A( KP, K )
  266:                   A( KP, K ) = T
  267:                END IF
  268:             END IF
  269: *
  270: *           Update the leading submatrix
  271: *
  272:             IF( KSTEP.EQ.1 ) THEN
  273: *
  274: *              1-by-1 pivot block D(k): column k now holds
  275: *
  276: *              W(k) = U(k)*D(k)
  277: *
  278: *              where U(k) is the k-th column of U
  279: *
  280: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  281: *
  282: *              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)'
  283: *
  284:                R1 = ONE / A( K, K )
  285:                CALL DSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  286: *
  287: *              Store U(k) in column k
  288: *
  289:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  290:             ELSE
  291: *
  292: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  293: *
  294: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  295: *
  296: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  297: *              of U
  298: *
  299: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  300: *
  301: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
  302: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )'
  303: *
  304:                IF( K.GT.2 ) THEN
  305: *
  306:                   D12 = A( K-1, K )
  307:                   D22 = A( K-1, K-1 ) / D12
  308:                   D11 = A( K, K ) / D12
  309:                   T = ONE / ( D11*D22-ONE )
  310:                   D12 = T / D12
  311: *
  312:                   DO 30 J = K - 2, 1, -1
  313:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  314:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  315:                      DO 20 I = J, 1, -1
  316:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  317:      $                              A( I, K-1 )*WKM1
  318:    20                CONTINUE
  319:                      A( J, K ) = WK
  320:                      A( J, K-1 ) = WKM1
  321:    30             CONTINUE
  322: *
  323:                END IF
  324: *
  325:             END IF
  326:          END IF
  327: *
  328: *        Store details of the interchanges in IPIV
  329: *
  330:          IF( KSTEP.EQ.1 ) THEN
  331:             IPIV( K ) = KP
  332:          ELSE
  333:             IPIV( K ) = -KP
  334:             IPIV( K-1 ) = -KP
  335:          END IF
  336: *
  337: *        Decrease K and return to the start of the main loop
  338: *
  339:          K = K - KSTEP
  340:          GO TO 10
  341: *
  342:       ELSE
  343: *
  344: *        Factorize A as L*D*L' using the lower triangle of A
  345: *
  346: *        K is the main loop index, increasing from 1 to N in steps of
  347: *        1 or 2
  348: *
  349:          K = 1
  350:    40    CONTINUE
  351: *
  352: *        If K > N, exit from loop
  353: *
  354:          IF( K.GT.N )
  355:      $      GO TO 70
  356:          KSTEP = 1
  357: *
  358: *        Determine rows and columns to be interchanged and whether
  359: *        a 1-by-1 or 2-by-2 pivot block will be used
  360: *
  361:          ABSAKK = ABS( A( K, K ) )
  362: *
  363: *        IMAX is the row-index of the largest off-diagonal element in
  364: *        column K, and COLMAX is its absolute value
  365: *
  366:          IF( K.LT.N ) THEN
  367:             IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  368:             COLMAX = ABS( A( IMAX, K ) )
  369:          ELSE
  370:             COLMAX = ZERO
  371:          END IF
  372: *
  373:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  374: *
  375: *           Column K is zero or contains a NaN: set INFO and continue
  376: *
  377:             IF( INFO.EQ.0 )
  378:      $         INFO = K
  379:             KP = K
  380:          ELSE
  381:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  382: *
  383: *              no interchange, use 1-by-1 pivot block
  384: *
  385:                KP = K
  386:             ELSE
  387: *
  388: *              JMAX is the column-index of the largest off-diagonal
  389: *              element in row IMAX, and ROWMAX is its absolute value
  390: *
  391:                JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  392:                ROWMAX = ABS( A( IMAX, JMAX ) )
  393:                IF( IMAX.LT.N ) THEN
  394:                   JMAX = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  395:                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  396:                END IF
  397: *
  398:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  399: *
  400: *                 no interchange, use 1-by-1 pivot block
  401: *
  402:                   KP = K
  403:                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  404: *
  405: *                 interchange rows and columns K and IMAX, use 1-by-1
  406: *                 pivot block
  407: *
  408:                   KP = IMAX
  409:                ELSE
  410: *
  411: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  412: *                 pivot block
  413: *
  414:                   KP = IMAX
  415:                   KSTEP = 2
  416:                END IF
  417:             END IF
  418: *
  419:             KK = K + KSTEP - 1
  420:             IF( KP.NE.KK ) THEN
  421: *
  422: *              Interchange rows and columns KK and KP in the trailing
  423: *              submatrix A(k:n,k:n)
  424: *
  425:                IF( KP.LT.N )
  426:      $            CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  427:                CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  428:      $                     LDA )
  429:                T = A( KK, KK )
  430:                A( KK, KK ) = A( KP, KP )
  431:                A( KP, KP ) = T
  432:                IF( KSTEP.EQ.2 ) THEN
  433:                   T = A( K+1, K )
  434:                   A( K+1, K ) = A( KP, K )
  435:                   A( KP, K ) = T
  436:                END IF
  437:             END IF
  438: *
  439: *           Update the trailing submatrix
  440: *
  441:             IF( KSTEP.EQ.1 ) THEN
  442: *
  443: *              1-by-1 pivot block D(k): column k now holds
  444: *
  445: *              W(k) = L(k)*D(k)
  446: *
  447: *              where L(k) is the k-th column of L
  448: *
  449:                IF( K.LT.N ) THEN
  450: *
  451: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  452: *
  453: *                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)'
  454: *
  455:                   D11 = ONE / A( K, K )
  456:                   CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  457:      $                       A( K+1, K+1 ), LDA )
  458: *
  459: *                 Store L(k) in column K
  460: *
  461:                   CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  462:                END IF
  463:             ELSE
  464: *
  465: *              2-by-2 pivot block D(k)
  466: *
  467:                IF( K.LT.N-1 ) THEN
  468: *
  469: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  470: *
  471: *                 A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))'
  472: *
  473: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  474: *                 columns of L
  475: *
  476:                   D21 = A( K+1, K )
  477:                   D11 = A( K+1, K+1 ) / D21
  478:                   D22 = A( K, K ) / D21
  479:                   T = ONE / ( D11*D22-ONE )
  480:                   D21 = T / D21
  481: *
  482:                   DO 60 J = K + 2, N
  483: *
  484:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  485:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  486: *
  487:                      DO 50 I = J, N
  488:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  489:      $                              A( I, K+1 )*WKP1
  490:    50                CONTINUE
  491: *
  492:                      A( J, K ) = WK
  493:                      A( J, K+1 ) = WKP1
  494: *
  495:    60             CONTINUE
  496:                END IF
  497:             END IF
  498:          END IF
  499: *
  500: *        Store details of the interchanges in IPIV
  501: *
  502:          IF( KSTEP.EQ.1 ) THEN
  503:             IPIV( K ) = KP
  504:          ELSE
  505:             IPIV( K ) = -KP
  506:             IPIV( K+1 ) = -KP
  507:          END IF
  508: *
  509: *        Increase K and return to the start of the main loop
  510: *
  511:          K = K + KSTEP
  512:          GO TO 40
  513: *
  514:       END IF
  515: *
  516:    70 CONTINUE
  517: *
  518:       RETURN
  519: *
  520: *     End of DSYTF2
  521: *
  522:       END

CVSweb interface <joel.bertrand@systella.fr>