Annotation of rpl/lapack/lapack/dsytf2.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
                      2: *
1.8     ! bertrand    3: *  -- LAPACK routine (version 3.3.1) --
1.1       bertrand    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand    6: *  -- April 2011                                                      --
1.1       bertrand    7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            INFO, LDA, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            IPIV( * )
                     14:       DOUBLE PRECISION   A( LDA, * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DSYTF2 computes the factorization of a real symmetric matrix A using
                     21: *  the Bunch-Kaufman diagonal pivoting method:
                     22: *
1.8     ! bertrand   23: *     A = U*D*U**T  or  A = L*D*L**T
1.1       bertrand   24: *
                     25: *  where U (or L) is a product of permutation and unit upper (lower)
1.8     ! bertrand   26: *  triangular matrices, U**T is the transpose of U, and D is symmetric and
1.1       bertrand   27: *  block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
                     28: *
                     29: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
                     30: *
                     31: *  Arguments
                     32: *  =========
                     33: *
                     34: *  UPLO    (input) CHARACTER*1
                     35: *          Specifies whether the upper or lower triangular part of the
                     36: *          symmetric matrix A is stored:
                     37: *          = 'U':  Upper triangular
                     38: *          = 'L':  Lower triangular
                     39: *
                     40: *  N       (input) INTEGER
                     41: *          The order of the matrix A.  N >= 0.
                     42: *
                     43: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     44: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     45: *          n-by-n upper triangular part of A contains the upper
                     46: *          triangular part of the matrix A, and the strictly lower
                     47: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     48: *          leading n-by-n lower triangular part of A contains the lower
                     49: *          triangular part of the matrix A, and the strictly upper
                     50: *          triangular part of A is not referenced.
                     51: *
                     52: *          On exit, the block diagonal matrix D and the multipliers used
                     53: *          to obtain the factor U or L (see below for further details).
                     54: *
                     55: *  LDA     (input) INTEGER
                     56: *          The leading dimension of the array A.  LDA >= max(1,N).
                     57: *
                     58: *  IPIV    (output) INTEGER array, dimension (N)
                     59: *          Details of the interchanges and the block structure of D.
                     60: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     61: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
                     62: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     63: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     64: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     65: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     66: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                     67: *
                     68: *  INFO    (output) INTEGER
                     69: *          = 0: successful exit
                     70: *          < 0: if INFO = -k, the k-th argument had an illegal value
                     71: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                     72: *               has been completed, but the block diagonal matrix D is
                     73: *               exactly singular, and division by zero will occur if it
                     74: *               is used to solve a system of equations.
                     75: *
                     76: *  Further Details
                     77: *  ===============
                     78: *
                     79: *  09-29-06 - patch from
                     80: *    Bobby Cheng, MathWorks
                     81: *
                     82: *    Replace l.204 and l.372
                     83: *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                     84: *    by
                     85: *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
                     86: *
                     87: *  01-01-96 - Based on modifications by
                     88: *    J. Lewis, Boeing Computer Services Company
                     89: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                     90: *  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
                     91: *         Company
                     92: *
1.8     ! bertrand   93: *  If UPLO = 'U', then A = U*D*U**T, where
1.1       bertrand   94: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                     95: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                     96: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                     97: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                     98: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                     99: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    100: *
                    101: *             (   I    v    0   )   k-s
                    102: *     U(k) =  (   0    I    0   )   s
                    103: *             (   0    0    I   )   n-k
                    104: *                k-s   s   n-k
                    105: *
                    106: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    107: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    108: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    109: *
1.8     ! bertrand  110: *  If UPLO = 'L', then A = L*D*L**T, where
1.1       bertrand  111: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    112: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    113: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    114: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    115: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    116: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    117: *
                    118: *             (   I    0     0   )  k-1
                    119: *     L(k) =  (   0    I     0   )  s
                    120: *             (   0    v     I   )  n-k-s+1
                    121: *                k-1   s  n-k-s+1
                    122: *
                    123: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    124: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    125: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    126: *
                    127: *  =====================================================================
                    128: *
                    129: *     .. Parameters ..
                    130:       DOUBLE PRECISION   ZERO, ONE
                    131:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    132:       DOUBLE PRECISION   EIGHT, SEVTEN
                    133:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    134: *     ..
                    135: *     .. Local Scalars ..
                    136:       LOGICAL            UPPER
                    137:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
                    138:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
                    139:      $                   ROWMAX, T, WK, WKM1, WKP1
                    140: *     ..
                    141: *     .. External Functions ..
                    142:       LOGICAL            LSAME, DISNAN
                    143:       INTEGER            IDAMAX
                    144:       EXTERNAL           LSAME, IDAMAX, DISNAN
                    145: *     ..
                    146: *     .. External Subroutines ..
                    147:       EXTERNAL           DSCAL, DSWAP, DSYR, XERBLA
                    148: *     ..
                    149: *     .. Intrinsic Functions ..
                    150:       INTRINSIC          ABS, MAX, SQRT
                    151: *     ..
                    152: *     .. Executable Statements ..
                    153: *
                    154: *     Test the input parameters.
                    155: *
                    156:       INFO = 0
                    157:       UPPER = LSAME( UPLO, 'U' )
                    158:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    159:          INFO = -1
                    160:       ELSE IF( N.LT.0 ) THEN
                    161:          INFO = -2
                    162:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    163:          INFO = -4
                    164:       END IF
                    165:       IF( INFO.NE.0 ) THEN
                    166:          CALL XERBLA( 'DSYTF2', -INFO )
                    167:          RETURN
                    168:       END IF
                    169: *
                    170: *     Initialize ALPHA for use in choosing pivot block size.
                    171: *
                    172:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    173: *
                    174:       IF( UPPER ) THEN
                    175: *
1.8     ! bertrand  176: *        Factorize A as U*D*U**T using the upper triangle of A
1.1       bertrand  177: *
                    178: *        K is the main loop index, decreasing from N to 1 in steps of
                    179: *        1 or 2
                    180: *
                    181:          K = N
                    182:    10    CONTINUE
                    183: *
                    184: *        If K < 1, exit from loop
                    185: *
                    186:          IF( K.LT.1 )
                    187:      $      GO TO 70
                    188:          KSTEP = 1
                    189: *
                    190: *        Determine rows and columns to be interchanged and whether
                    191: *        a 1-by-1 or 2-by-2 pivot block will be used
                    192: *
                    193:          ABSAKK = ABS( A( K, K ) )
                    194: *
                    195: *        IMAX is the row-index of the largest off-diagonal element in
                    196: *        column K, and COLMAX is its absolute value
                    197: *
                    198:          IF( K.GT.1 ) THEN
                    199:             IMAX = IDAMAX( K-1, A( 1, K ), 1 )
                    200:             COLMAX = ABS( A( IMAX, K ) )
                    201:          ELSE
                    202:             COLMAX = ZERO
                    203:          END IF
                    204: *
                    205:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
                    206: *
                    207: *           Column K is zero or contains a NaN: set INFO and continue
                    208: *
                    209:             IF( INFO.EQ.0 )
                    210:      $         INFO = K
                    211:             KP = K
                    212:          ELSE
                    213:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    214: *
                    215: *              no interchange, use 1-by-1 pivot block
                    216: *
                    217:                KP = K
                    218:             ELSE
                    219: *
                    220: *              JMAX is the column-index of the largest off-diagonal
                    221: *              element in row IMAX, and ROWMAX is its absolute value
                    222: *
                    223:                JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
                    224:                ROWMAX = ABS( A( IMAX, JMAX ) )
                    225:                IF( IMAX.GT.1 ) THEN
                    226:                   JMAX = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
                    227:                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
                    228:                END IF
                    229: *
                    230:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    231: *
                    232: *                 no interchange, use 1-by-1 pivot block
                    233: *
                    234:                   KP = K
                    235:                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
                    236: *
                    237: *                 interchange rows and columns K and IMAX, use 1-by-1
                    238: *                 pivot block
                    239: *
                    240:                   KP = IMAX
                    241:                ELSE
                    242: *
                    243: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
                    244: *                 pivot block
                    245: *
                    246:                   KP = IMAX
                    247:                   KSTEP = 2
                    248:                END IF
                    249:             END IF
                    250: *
                    251:             KK = K - KSTEP + 1
                    252:             IF( KP.NE.KK ) THEN
                    253: *
                    254: *              Interchange rows and columns KK and KP in the leading
                    255: *              submatrix A(1:k,1:k)
                    256: *
                    257:                CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
                    258:                CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
                    259:      $                     LDA )
                    260:                T = A( KK, KK )
                    261:                A( KK, KK ) = A( KP, KP )
                    262:                A( KP, KP ) = T
                    263:                IF( KSTEP.EQ.2 ) THEN
                    264:                   T = A( K-1, K )
                    265:                   A( K-1, K ) = A( KP, K )
                    266:                   A( KP, K ) = T
                    267:                END IF
                    268:             END IF
                    269: *
                    270: *           Update the leading submatrix
                    271: *
                    272:             IF( KSTEP.EQ.1 ) THEN
                    273: *
                    274: *              1-by-1 pivot block D(k): column k now holds
                    275: *
                    276: *              W(k) = U(k)*D(k)
                    277: *
                    278: *              where U(k) is the k-th column of U
                    279: *
                    280: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
                    281: *
1.8     ! bertrand  282: *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
1.1       bertrand  283: *
                    284:                R1 = ONE / A( K, K )
                    285:                CALL DSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
                    286: *
                    287: *              Store U(k) in column k
                    288: *
                    289:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
                    290:             ELSE
                    291: *
                    292: *              2-by-2 pivot block D(k): columns k and k-1 now hold
                    293: *
                    294: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
                    295: *
                    296: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    297: *              of U
                    298: *
                    299: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
                    300: *
1.8     ! bertrand  301: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
        !           302: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
1.1       bertrand  303: *
                    304:                IF( K.GT.2 ) THEN
                    305: *
                    306:                   D12 = A( K-1, K )
                    307:                   D22 = A( K-1, K-1 ) / D12
                    308:                   D11 = A( K, K ) / D12
                    309:                   T = ONE / ( D11*D22-ONE )
                    310:                   D12 = T / D12
                    311: *
                    312:                   DO 30 J = K - 2, 1, -1
                    313:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
                    314:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
                    315:                      DO 20 I = J, 1, -1
                    316:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
                    317:      $                              A( I, K-1 )*WKM1
                    318:    20                CONTINUE
                    319:                      A( J, K ) = WK
                    320:                      A( J, K-1 ) = WKM1
                    321:    30             CONTINUE
                    322: *
                    323:                END IF
                    324: *
                    325:             END IF
                    326:          END IF
                    327: *
                    328: *        Store details of the interchanges in IPIV
                    329: *
                    330:          IF( KSTEP.EQ.1 ) THEN
                    331:             IPIV( K ) = KP
                    332:          ELSE
                    333:             IPIV( K ) = -KP
                    334:             IPIV( K-1 ) = -KP
                    335:          END IF
                    336: *
                    337: *        Decrease K and return to the start of the main loop
                    338: *
                    339:          K = K - KSTEP
                    340:          GO TO 10
                    341: *
                    342:       ELSE
                    343: *
1.8     ! bertrand  344: *        Factorize A as L*D*L**T using the lower triangle of A
1.1       bertrand  345: *
                    346: *        K is the main loop index, increasing from 1 to N in steps of
                    347: *        1 or 2
                    348: *
                    349:          K = 1
                    350:    40    CONTINUE
                    351: *
                    352: *        If K > N, exit from loop
                    353: *
                    354:          IF( K.GT.N )
                    355:      $      GO TO 70
                    356:          KSTEP = 1
                    357: *
                    358: *        Determine rows and columns to be interchanged and whether
                    359: *        a 1-by-1 or 2-by-2 pivot block will be used
                    360: *
                    361:          ABSAKK = ABS( A( K, K ) )
                    362: *
                    363: *        IMAX is the row-index of the largest off-diagonal element in
                    364: *        column K, and COLMAX is its absolute value
                    365: *
                    366:          IF( K.LT.N ) THEN
                    367:             IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
                    368:             COLMAX = ABS( A( IMAX, K ) )
                    369:          ELSE
                    370:             COLMAX = ZERO
                    371:          END IF
                    372: *
                    373:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
                    374: *
                    375: *           Column K is zero or contains a NaN: set INFO and continue
                    376: *
                    377:             IF( INFO.EQ.0 )
                    378:      $         INFO = K
                    379:             KP = K
                    380:          ELSE
                    381:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    382: *
                    383: *              no interchange, use 1-by-1 pivot block
                    384: *
                    385:                KP = K
                    386:             ELSE
                    387: *
                    388: *              JMAX is the column-index of the largest off-diagonal
                    389: *              element in row IMAX, and ROWMAX is its absolute value
                    390: *
                    391:                JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
                    392:                ROWMAX = ABS( A( IMAX, JMAX ) )
                    393:                IF( IMAX.LT.N ) THEN
                    394:                   JMAX = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
                    395:                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
                    396:                END IF
                    397: *
                    398:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    399: *
                    400: *                 no interchange, use 1-by-1 pivot block
                    401: *
                    402:                   KP = K
                    403:                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
                    404: *
                    405: *                 interchange rows and columns K and IMAX, use 1-by-1
                    406: *                 pivot block
                    407: *
                    408:                   KP = IMAX
                    409:                ELSE
                    410: *
                    411: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
                    412: *                 pivot block
                    413: *
                    414:                   KP = IMAX
                    415:                   KSTEP = 2
                    416:                END IF
                    417:             END IF
                    418: *
                    419:             KK = K + KSTEP - 1
                    420:             IF( KP.NE.KK ) THEN
                    421: *
                    422: *              Interchange rows and columns KK and KP in the trailing
                    423: *              submatrix A(k:n,k:n)
                    424: *
                    425:                IF( KP.LT.N )
                    426:      $            CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
                    427:                CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
                    428:      $                     LDA )
                    429:                T = A( KK, KK )
                    430:                A( KK, KK ) = A( KP, KP )
                    431:                A( KP, KP ) = T
                    432:                IF( KSTEP.EQ.2 ) THEN
                    433:                   T = A( K+1, K )
                    434:                   A( K+1, K ) = A( KP, K )
                    435:                   A( KP, K ) = T
                    436:                END IF
                    437:             END IF
                    438: *
                    439: *           Update the trailing submatrix
                    440: *
                    441:             IF( KSTEP.EQ.1 ) THEN
                    442: *
                    443: *              1-by-1 pivot block D(k): column k now holds
                    444: *
                    445: *              W(k) = L(k)*D(k)
                    446: *
                    447: *              where L(k) is the k-th column of L
                    448: *
                    449:                IF( K.LT.N ) THEN
                    450: *
                    451: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
                    452: *
1.8     ! bertrand  453: *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
1.1       bertrand  454: *
                    455:                   D11 = ONE / A( K, K )
                    456:                   CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
                    457:      $                       A( K+1, K+1 ), LDA )
                    458: *
                    459: *                 Store L(k) in column K
                    460: *
                    461:                   CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
                    462:                END IF
                    463:             ELSE
                    464: *
                    465: *              2-by-2 pivot block D(k)
                    466: *
                    467:                IF( K.LT.N-1 ) THEN
                    468: *
                    469: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
                    470: *
1.8     ! bertrand  471: *                 A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))**T
1.1       bertrand  472: *
                    473: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
                    474: *                 columns of L
                    475: *
                    476:                   D21 = A( K+1, K )
                    477:                   D11 = A( K+1, K+1 ) / D21
                    478:                   D22 = A( K, K ) / D21
                    479:                   T = ONE / ( D11*D22-ONE )
                    480:                   D21 = T / D21
                    481: *
                    482:                   DO 60 J = K + 2, N
                    483: *
                    484:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
                    485:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
                    486: *
                    487:                      DO 50 I = J, N
                    488:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
                    489:      $                              A( I, K+1 )*WKP1
                    490:    50                CONTINUE
                    491: *
                    492:                      A( J, K ) = WK
                    493:                      A( J, K+1 ) = WKP1
                    494: *
                    495:    60             CONTINUE
                    496:                END IF
                    497:             END IF
                    498:          END IF
                    499: *
                    500: *        Store details of the interchanges in IPIV
                    501: *
                    502:          IF( KSTEP.EQ.1 ) THEN
                    503:             IPIV( K ) = KP
                    504:          ELSE
                    505:             IPIV( K ) = -KP
                    506:             IPIV( K+1 ) = -KP
                    507:          END IF
                    508: *
                    509: *        Increase K and return to the start of the main loop
                    510: *
                    511:          K = K + KSTEP
                    512:          GO TO 40
                    513: *
                    514:       END IF
                    515: *
                    516:    70 CONTINUE
                    517: *
                    518:       RETURN
                    519: *
                    520: *     End of DSYTF2
                    521: *
                    522:       END

CVSweb interface <joel.bertrand@systella.fr>