Annotation of rpl/lapack/lapack/dsytf2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       CHARACTER          UPLO
        !            10:       INTEGER            INFO, LDA, N
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       INTEGER            IPIV( * )
        !            14:       DOUBLE PRECISION   A( LDA, * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  DSYTF2 computes the factorization of a real symmetric matrix A using
        !            21: *  the Bunch-Kaufman diagonal pivoting method:
        !            22: *
        !            23: *     A = U*D*U'  or  A = L*D*L'
        !            24: *
        !            25: *  where U (or L) is a product of permutation and unit upper (lower)
        !            26: *  triangular matrices, U' is the transpose of U, and D is symmetric and
        !            27: *  block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
        !            28: *
        !            29: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
        !            30: *
        !            31: *  Arguments
        !            32: *  =========
        !            33: *
        !            34: *  UPLO    (input) CHARACTER*1
        !            35: *          Specifies whether the upper or lower triangular part of the
        !            36: *          symmetric matrix A is stored:
        !            37: *          = 'U':  Upper triangular
        !            38: *          = 'L':  Lower triangular
        !            39: *
        !            40: *  N       (input) INTEGER
        !            41: *          The order of the matrix A.  N >= 0.
        !            42: *
        !            43: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            44: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
        !            45: *          n-by-n upper triangular part of A contains the upper
        !            46: *          triangular part of the matrix A, and the strictly lower
        !            47: *          triangular part of A is not referenced.  If UPLO = 'L', the
        !            48: *          leading n-by-n lower triangular part of A contains the lower
        !            49: *          triangular part of the matrix A, and the strictly upper
        !            50: *          triangular part of A is not referenced.
        !            51: *
        !            52: *          On exit, the block diagonal matrix D and the multipliers used
        !            53: *          to obtain the factor U or L (see below for further details).
        !            54: *
        !            55: *  LDA     (input) INTEGER
        !            56: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            57: *
        !            58: *  IPIV    (output) INTEGER array, dimension (N)
        !            59: *          Details of the interchanges and the block structure of D.
        !            60: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
        !            61: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
        !            62: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
        !            63: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
        !            64: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
        !            65: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
        !            66: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
        !            67: *
        !            68: *  INFO    (output) INTEGER
        !            69: *          = 0: successful exit
        !            70: *          < 0: if INFO = -k, the k-th argument had an illegal value
        !            71: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
        !            72: *               has been completed, but the block diagonal matrix D is
        !            73: *               exactly singular, and division by zero will occur if it
        !            74: *               is used to solve a system of equations.
        !            75: *
        !            76: *  Further Details
        !            77: *  ===============
        !            78: *
        !            79: *  09-29-06 - patch from
        !            80: *    Bobby Cheng, MathWorks
        !            81: *
        !            82: *    Replace l.204 and l.372
        !            83: *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
        !            84: *    by
        !            85: *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
        !            86: *
        !            87: *  01-01-96 - Based on modifications by
        !            88: *    J. Lewis, Boeing Computer Services Company
        !            89: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
        !            90: *  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
        !            91: *         Company
        !            92: *
        !            93: *  If UPLO = 'U', then A = U*D*U', where
        !            94: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
        !            95: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
        !            96: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !            97: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !            98: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
        !            99: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           100: *
        !           101: *             (   I    v    0   )   k-s
        !           102: *     U(k) =  (   0    I    0   )   s
        !           103: *             (   0    0    I   )   n-k
        !           104: *                k-s   s   n-k
        !           105: *
        !           106: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
        !           107: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
        !           108: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
        !           109: *
        !           110: *  If UPLO = 'L', then A = L*D*L', where
        !           111: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
        !           112: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
        !           113: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !           114: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !           115: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
        !           116: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           117: *
        !           118: *             (   I    0     0   )  k-1
        !           119: *     L(k) =  (   0    I     0   )  s
        !           120: *             (   0    v     I   )  n-k-s+1
        !           121: *                k-1   s  n-k-s+1
        !           122: *
        !           123: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
        !           124: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
        !           125: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
        !           126: *
        !           127: *  =====================================================================
        !           128: *
        !           129: *     .. Parameters ..
        !           130:       DOUBLE PRECISION   ZERO, ONE
        !           131:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           132:       DOUBLE PRECISION   EIGHT, SEVTEN
        !           133:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
        !           134: *     ..
        !           135: *     .. Local Scalars ..
        !           136:       LOGICAL            UPPER
        !           137:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
        !           138:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
        !           139:      $                   ROWMAX, T, WK, WKM1, WKP1
        !           140: *     ..
        !           141: *     .. External Functions ..
        !           142:       LOGICAL            LSAME, DISNAN
        !           143:       INTEGER            IDAMAX
        !           144:       EXTERNAL           LSAME, IDAMAX, DISNAN
        !           145: *     ..
        !           146: *     .. External Subroutines ..
        !           147:       EXTERNAL           DSCAL, DSWAP, DSYR, XERBLA
        !           148: *     ..
        !           149: *     .. Intrinsic Functions ..
        !           150:       INTRINSIC          ABS, MAX, SQRT
        !           151: *     ..
        !           152: *     .. Executable Statements ..
        !           153: *
        !           154: *     Test the input parameters.
        !           155: *
        !           156:       INFO = 0
        !           157:       UPPER = LSAME( UPLO, 'U' )
        !           158:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           159:          INFO = -1
        !           160:       ELSE IF( N.LT.0 ) THEN
        !           161:          INFO = -2
        !           162:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           163:          INFO = -4
        !           164:       END IF
        !           165:       IF( INFO.NE.0 ) THEN
        !           166:          CALL XERBLA( 'DSYTF2', -INFO )
        !           167:          RETURN
        !           168:       END IF
        !           169: *
        !           170: *     Initialize ALPHA for use in choosing pivot block size.
        !           171: *
        !           172:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
        !           173: *
        !           174:       IF( UPPER ) THEN
        !           175: *
        !           176: *        Factorize A as U*D*U' using the upper triangle of A
        !           177: *
        !           178: *        K is the main loop index, decreasing from N to 1 in steps of
        !           179: *        1 or 2
        !           180: *
        !           181:          K = N
        !           182:    10    CONTINUE
        !           183: *
        !           184: *        If K < 1, exit from loop
        !           185: *
        !           186:          IF( K.LT.1 )
        !           187:      $      GO TO 70
        !           188:          KSTEP = 1
        !           189: *
        !           190: *        Determine rows and columns to be interchanged and whether
        !           191: *        a 1-by-1 or 2-by-2 pivot block will be used
        !           192: *
        !           193:          ABSAKK = ABS( A( K, K ) )
        !           194: *
        !           195: *        IMAX is the row-index of the largest off-diagonal element in
        !           196: *        column K, and COLMAX is its absolute value
        !           197: *
        !           198:          IF( K.GT.1 ) THEN
        !           199:             IMAX = IDAMAX( K-1, A( 1, K ), 1 )
        !           200:             COLMAX = ABS( A( IMAX, K ) )
        !           201:          ELSE
        !           202:             COLMAX = ZERO
        !           203:          END IF
        !           204: *
        !           205:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
        !           206: *
        !           207: *           Column K is zero or contains a NaN: set INFO and continue
        !           208: *
        !           209:             IF( INFO.EQ.0 )
        !           210:      $         INFO = K
        !           211:             KP = K
        !           212:          ELSE
        !           213:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
        !           214: *
        !           215: *              no interchange, use 1-by-1 pivot block
        !           216: *
        !           217:                KP = K
        !           218:             ELSE
        !           219: *
        !           220: *              JMAX is the column-index of the largest off-diagonal
        !           221: *              element in row IMAX, and ROWMAX is its absolute value
        !           222: *
        !           223:                JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
        !           224:                ROWMAX = ABS( A( IMAX, JMAX ) )
        !           225:                IF( IMAX.GT.1 ) THEN
        !           226:                   JMAX = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
        !           227:                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
        !           228:                END IF
        !           229: *
        !           230:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
        !           231: *
        !           232: *                 no interchange, use 1-by-1 pivot block
        !           233: *
        !           234:                   KP = K
        !           235:                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
        !           236: *
        !           237: *                 interchange rows and columns K and IMAX, use 1-by-1
        !           238: *                 pivot block
        !           239: *
        !           240:                   KP = IMAX
        !           241:                ELSE
        !           242: *
        !           243: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
        !           244: *                 pivot block
        !           245: *
        !           246:                   KP = IMAX
        !           247:                   KSTEP = 2
        !           248:                END IF
        !           249:             END IF
        !           250: *
        !           251:             KK = K - KSTEP + 1
        !           252:             IF( KP.NE.KK ) THEN
        !           253: *
        !           254: *              Interchange rows and columns KK and KP in the leading
        !           255: *              submatrix A(1:k,1:k)
        !           256: *
        !           257:                CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
        !           258:                CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
        !           259:      $                     LDA )
        !           260:                T = A( KK, KK )
        !           261:                A( KK, KK ) = A( KP, KP )
        !           262:                A( KP, KP ) = T
        !           263:                IF( KSTEP.EQ.2 ) THEN
        !           264:                   T = A( K-1, K )
        !           265:                   A( K-1, K ) = A( KP, K )
        !           266:                   A( KP, K ) = T
        !           267:                END IF
        !           268:             END IF
        !           269: *
        !           270: *           Update the leading submatrix
        !           271: *
        !           272:             IF( KSTEP.EQ.1 ) THEN
        !           273: *
        !           274: *              1-by-1 pivot block D(k): column k now holds
        !           275: *
        !           276: *              W(k) = U(k)*D(k)
        !           277: *
        !           278: *              where U(k) is the k-th column of U
        !           279: *
        !           280: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
        !           281: *
        !           282: *              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)'
        !           283: *
        !           284:                R1 = ONE / A( K, K )
        !           285:                CALL DSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
        !           286: *
        !           287: *              Store U(k) in column k
        !           288: *
        !           289:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
        !           290:             ELSE
        !           291: *
        !           292: *              2-by-2 pivot block D(k): columns k and k-1 now hold
        !           293: *
        !           294: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
        !           295: *
        !           296: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
        !           297: *              of U
        !           298: *
        !           299: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
        !           300: *
        !           301: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
        !           302: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )'
        !           303: *
        !           304:                IF( K.GT.2 ) THEN
        !           305: *
        !           306:                   D12 = A( K-1, K )
        !           307:                   D22 = A( K-1, K-1 ) / D12
        !           308:                   D11 = A( K, K ) / D12
        !           309:                   T = ONE / ( D11*D22-ONE )
        !           310:                   D12 = T / D12
        !           311: *
        !           312:                   DO 30 J = K - 2, 1, -1
        !           313:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
        !           314:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
        !           315:                      DO 20 I = J, 1, -1
        !           316:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
        !           317:      $                              A( I, K-1 )*WKM1
        !           318:    20                CONTINUE
        !           319:                      A( J, K ) = WK
        !           320:                      A( J, K-1 ) = WKM1
        !           321:    30             CONTINUE
        !           322: *
        !           323:                END IF
        !           324: *
        !           325:             END IF
        !           326:          END IF
        !           327: *
        !           328: *        Store details of the interchanges in IPIV
        !           329: *
        !           330:          IF( KSTEP.EQ.1 ) THEN
        !           331:             IPIV( K ) = KP
        !           332:          ELSE
        !           333:             IPIV( K ) = -KP
        !           334:             IPIV( K-1 ) = -KP
        !           335:          END IF
        !           336: *
        !           337: *        Decrease K and return to the start of the main loop
        !           338: *
        !           339:          K = K - KSTEP
        !           340:          GO TO 10
        !           341: *
        !           342:       ELSE
        !           343: *
        !           344: *        Factorize A as L*D*L' using the lower triangle of A
        !           345: *
        !           346: *        K is the main loop index, increasing from 1 to N in steps of
        !           347: *        1 or 2
        !           348: *
        !           349:          K = 1
        !           350:    40    CONTINUE
        !           351: *
        !           352: *        If K > N, exit from loop
        !           353: *
        !           354:          IF( K.GT.N )
        !           355:      $      GO TO 70
        !           356:          KSTEP = 1
        !           357: *
        !           358: *        Determine rows and columns to be interchanged and whether
        !           359: *        a 1-by-1 or 2-by-2 pivot block will be used
        !           360: *
        !           361:          ABSAKK = ABS( A( K, K ) )
        !           362: *
        !           363: *        IMAX is the row-index of the largest off-diagonal element in
        !           364: *        column K, and COLMAX is its absolute value
        !           365: *
        !           366:          IF( K.LT.N ) THEN
        !           367:             IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
        !           368:             COLMAX = ABS( A( IMAX, K ) )
        !           369:          ELSE
        !           370:             COLMAX = ZERO
        !           371:          END IF
        !           372: *
        !           373:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
        !           374: *
        !           375: *           Column K is zero or contains a NaN: set INFO and continue
        !           376: *
        !           377:             IF( INFO.EQ.0 )
        !           378:      $         INFO = K
        !           379:             KP = K
        !           380:          ELSE
        !           381:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
        !           382: *
        !           383: *              no interchange, use 1-by-1 pivot block
        !           384: *
        !           385:                KP = K
        !           386:             ELSE
        !           387: *
        !           388: *              JMAX is the column-index of the largest off-diagonal
        !           389: *              element in row IMAX, and ROWMAX is its absolute value
        !           390: *
        !           391:                JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
        !           392:                ROWMAX = ABS( A( IMAX, JMAX ) )
        !           393:                IF( IMAX.LT.N ) THEN
        !           394:                   JMAX = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
        !           395:                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
        !           396:                END IF
        !           397: *
        !           398:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
        !           399: *
        !           400: *                 no interchange, use 1-by-1 pivot block
        !           401: *
        !           402:                   KP = K
        !           403:                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
        !           404: *
        !           405: *                 interchange rows and columns K and IMAX, use 1-by-1
        !           406: *                 pivot block
        !           407: *
        !           408:                   KP = IMAX
        !           409:                ELSE
        !           410: *
        !           411: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
        !           412: *                 pivot block
        !           413: *
        !           414:                   KP = IMAX
        !           415:                   KSTEP = 2
        !           416:                END IF
        !           417:             END IF
        !           418: *
        !           419:             KK = K + KSTEP - 1
        !           420:             IF( KP.NE.KK ) THEN
        !           421: *
        !           422: *              Interchange rows and columns KK and KP in the trailing
        !           423: *              submatrix A(k:n,k:n)
        !           424: *
        !           425:                IF( KP.LT.N )
        !           426:      $            CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
        !           427:                CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
        !           428:      $                     LDA )
        !           429:                T = A( KK, KK )
        !           430:                A( KK, KK ) = A( KP, KP )
        !           431:                A( KP, KP ) = T
        !           432:                IF( KSTEP.EQ.2 ) THEN
        !           433:                   T = A( K+1, K )
        !           434:                   A( K+1, K ) = A( KP, K )
        !           435:                   A( KP, K ) = T
        !           436:                END IF
        !           437:             END IF
        !           438: *
        !           439: *           Update the trailing submatrix
        !           440: *
        !           441:             IF( KSTEP.EQ.1 ) THEN
        !           442: *
        !           443: *              1-by-1 pivot block D(k): column k now holds
        !           444: *
        !           445: *              W(k) = L(k)*D(k)
        !           446: *
        !           447: *              where L(k) is the k-th column of L
        !           448: *
        !           449:                IF( K.LT.N ) THEN
        !           450: *
        !           451: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
        !           452: *
        !           453: *                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)'
        !           454: *
        !           455:                   D11 = ONE / A( K, K )
        !           456:                   CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
        !           457:      $                       A( K+1, K+1 ), LDA )
        !           458: *
        !           459: *                 Store L(k) in column K
        !           460: *
        !           461:                   CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
        !           462:                END IF
        !           463:             ELSE
        !           464: *
        !           465: *              2-by-2 pivot block D(k)
        !           466: *
        !           467:                IF( K.LT.N-1 ) THEN
        !           468: *
        !           469: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
        !           470: *
        !           471: *                 A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))'
        !           472: *
        !           473: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
        !           474: *                 columns of L
        !           475: *
        !           476:                   D21 = A( K+1, K )
        !           477:                   D11 = A( K+1, K+1 ) / D21
        !           478:                   D22 = A( K, K ) / D21
        !           479:                   T = ONE / ( D11*D22-ONE )
        !           480:                   D21 = T / D21
        !           481: *
        !           482:                   DO 60 J = K + 2, N
        !           483: *
        !           484:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
        !           485:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
        !           486: *
        !           487:                      DO 50 I = J, N
        !           488:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
        !           489:      $                              A( I, K+1 )*WKP1
        !           490:    50                CONTINUE
        !           491: *
        !           492:                      A( J, K ) = WK
        !           493:                      A( J, K+1 ) = WKP1
        !           494: *
        !           495:    60             CONTINUE
        !           496:                END IF
        !           497:             END IF
        !           498:          END IF
        !           499: *
        !           500: *        Store details of the interchanges in IPIV
        !           501: *
        !           502:          IF( KSTEP.EQ.1 ) THEN
        !           503:             IPIV( K ) = KP
        !           504:          ELSE
        !           505:             IPIV( K ) = -KP
        !           506:             IPIV( K+1 ) = -KP
        !           507:          END IF
        !           508: *
        !           509: *        Increase K and return to the start of the main loop
        !           510: *
        !           511:          K = K + KSTEP
        !           512:          GO TO 40
        !           513: *
        !           514:       END IF
        !           515: *
        !           516:    70 CONTINUE
        !           517: *
        !           518:       RETURN
        !           519: *
        !           520: *     End of DSYTF2
        !           521: *
        !           522:       END

CVSweb interface <joel.bertrand@systella.fr>