File:  [local] / rpl / lapack / lapack / dsytd2.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:27 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSYTD2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytd2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytd2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytd2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAU( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
   38: *> form T by an orthogonal similarity transformation: Q**T * A * Q = T.
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] UPLO
   45: *> \verbatim
   46: *>          UPLO is CHARACTER*1
   47: *>          Specifies whether the upper or lower triangular part of the
   48: *>          symmetric matrix A is stored:
   49: *>          = 'U':  Upper triangular
   50: *>          = 'L':  Lower triangular
   51: *> \endverbatim
   52: *>
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The order of the matrix A.  N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in,out] A
   60: *> \verbatim
   61: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   62: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   63: *>          n-by-n upper triangular part of A contains the upper
   64: *>          triangular part of the matrix A, and the strictly lower
   65: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   66: *>          leading n-by-n lower triangular part of A contains the lower
   67: *>          triangular part of the matrix A, and the strictly upper
   68: *>          triangular part of A is not referenced.
   69: *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
   70: *>          of A are overwritten by the corresponding elements of the
   71: *>          tridiagonal matrix T, and the elements above the first
   72: *>          superdiagonal, with the array TAU, represent the orthogonal
   73: *>          matrix Q as a product of elementary reflectors; if UPLO
   74: *>          = 'L', the diagonal and first subdiagonal of A are over-
   75: *>          written by the corresponding elements of the tridiagonal
   76: *>          matrix T, and the elements below the first subdiagonal, with
   77: *>          the array TAU, represent the orthogonal matrix Q as a product
   78: *>          of elementary reflectors. See Further Details.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[out] D
   88: *> \verbatim
   89: *>          D is DOUBLE PRECISION array, dimension (N)
   90: *>          The diagonal elements of the tridiagonal matrix T:
   91: *>          D(i) = A(i,i).
   92: *> \endverbatim
   93: *>
   94: *> \param[out] E
   95: *> \verbatim
   96: *>          E is DOUBLE PRECISION array, dimension (N-1)
   97: *>          The off-diagonal elements of the tridiagonal matrix T:
   98: *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
   99: *> \endverbatim
  100: *>
  101: *> \param[out] TAU
  102: *> \verbatim
  103: *>          TAU is DOUBLE PRECISION array, dimension (N-1)
  104: *>          The scalar factors of the elementary reflectors (see Further
  105: *>          Details).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] INFO
  109: *> \verbatim
  110: *>          INFO is INTEGER
  111: *>          = 0:  successful exit
  112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  113: *> \endverbatim
  114: *
  115: *  Authors:
  116: *  ========
  117: *
  118: *> \author Univ. of Tennessee 
  119: *> \author Univ. of California Berkeley 
  120: *> \author Univ. of Colorado Denver 
  121: *> \author NAG Ltd. 
  122: *
  123: *> \date September 2012
  124: *
  125: *> \ingroup doubleSYcomputational
  126: *
  127: *> \par Further Details:
  128: *  =====================
  129: *>
  130: *> \verbatim
  131: *>
  132: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
  133: *>  reflectors
  134: *>
  135: *>     Q = H(n-1) . . . H(2) H(1).
  136: *>
  137: *>  Each H(i) has the form
  138: *>
  139: *>     H(i) = I - tau * v * v**T
  140: *>
  141: *>  where tau is a real scalar, and v is a real vector with
  142: *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  143: *>  A(1:i-1,i+1), and tau in TAU(i).
  144: *>
  145: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
  146: *>  reflectors
  147: *>
  148: *>     Q = H(1) H(2) . . . H(n-1).
  149: *>
  150: *>  Each H(i) has the form
  151: *>
  152: *>     H(i) = I - tau * v * v**T
  153: *>
  154: *>  where tau is a real scalar, and v is a real vector with
  155: *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  156: *>  and tau in TAU(i).
  157: *>
  158: *>  The contents of A on exit are illustrated by the following examples
  159: *>  with n = 5:
  160: *>
  161: *>  if UPLO = 'U':                       if UPLO = 'L':
  162: *>
  163: *>    (  d   e   v2  v3  v4 )              (  d                  )
  164: *>    (      d   e   v3  v4 )              (  e   d              )
  165: *>    (          d   e   v4 )              (  v1  e   d          )
  166: *>    (              d   e  )              (  v1  v2  e   d      )
  167: *>    (                  d  )              (  v1  v2  v3  e   d  )
  168: *>
  169: *>  where d and e denote diagonal and off-diagonal elements of T, and vi
  170: *>  denotes an element of the vector defining H(i).
  171: *> \endverbatim
  172: *>
  173: *  =====================================================================
  174:       SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
  175: *
  176: *  -- LAPACK computational routine (version 3.4.2) --
  177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  179: *     September 2012
  180: *
  181: *     .. Scalar Arguments ..
  182:       CHARACTER          UPLO
  183:       INTEGER            INFO, LDA, N
  184: *     ..
  185: *     .. Array Arguments ..
  186:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAU( * )
  187: *     ..
  188: *
  189: *  =====================================================================
  190: *
  191: *     .. Parameters ..
  192:       DOUBLE PRECISION   ONE, ZERO, HALF
  193:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0,
  194:      $                   HALF = 1.0D0 / 2.0D0 )
  195: *     ..
  196: *     .. Local Scalars ..
  197:       LOGICAL            UPPER
  198:       INTEGER            I
  199:       DOUBLE PRECISION   ALPHA, TAUI
  200: *     ..
  201: *     .. External Subroutines ..
  202:       EXTERNAL           DAXPY, DLARFG, DSYMV, DSYR2, XERBLA
  203: *     ..
  204: *     .. External Functions ..
  205:       LOGICAL            LSAME
  206:       DOUBLE PRECISION   DDOT
  207:       EXTERNAL           LSAME, DDOT
  208: *     ..
  209: *     .. Intrinsic Functions ..
  210:       INTRINSIC          MAX, MIN
  211: *     ..
  212: *     .. Executable Statements ..
  213: *
  214: *     Test the input parameters
  215: *
  216:       INFO = 0
  217:       UPPER = LSAME( UPLO, 'U' )
  218:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  219:          INFO = -1
  220:       ELSE IF( N.LT.0 ) THEN
  221:          INFO = -2
  222:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  223:          INFO = -4
  224:       END IF
  225:       IF( INFO.NE.0 ) THEN
  226:          CALL XERBLA( 'DSYTD2', -INFO )
  227:          RETURN
  228:       END IF
  229: *
  230: *     Quick return if possible
  231: *
  232:       IF( N.LE.0 )
  233:      $   RETURN
  234: *
  235:       IF( UPPER ) THEN
  236: *
  237: *        Reduce the upper triangle of A
  238: *
  239:          DO 10 I = N - 1, 1, -1
  240: *
  241: *           Generate elementary reflector H(i) = I - tau * v * v**T
  242: *           to annihilate A(1:i-1,i+1)
  243: *
  244:             CALL DLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
  245:             E( I ) = A( I, I+1 )
  246: *
  247:             IF( TAUI.NE.ZERO ) THEN
  248: *
  249: *              Apply H(i) from both sides to A(1:i,1:i)
  250: *
  251:                A( I, I+1 ) = ONE
  252: *
  253: *              Compute  x := tau * A * v  storing x in TAU(1:i)
  254: *
  255:                CALL DSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
  256:      $                     TAU, 1 )
  257: *
  258: *              Compute  w := x - 1/2 * tau * (x**T * v) * v
  259: *
  260:                ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, A( 1, I+1 ), 1 )
  261:                CALL DAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
  262: *
  263: *              Apply the transformation as a rank-2 update:
  264: *                 A := A - v * w**T - w * v**T
  265: *
  266:                CALL DSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
  267:      $                     LDA )
  268: *
  269:                A( I, I+1 ) = E( I )
  270:             END IF
  271:             D( I+1 ) = A( I+1, I+1 )
  272:             TAU( I ) = TAUI
  273:    10    CONTINUE
  274:          D( 1 ) = A( 1, 1 )
  275:       ELSE
  276: *
  277: *        Reduce the lower triangle of A
  278: *
  279:          DO 20 I = 1, N - 1
  280: *
  281: *           Generate elementary reflector H(i) = I - tau * v * v**T
  282: *           to annihilate A(i+2:n,i)
  283: *
  284:             CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
  285:      $                   TAUI )
  286:             E( I ) = A( I+1, I )
  287: *
  288:             IF( TAUI.NE.ZERO ) THEN
  289: *
  290: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
  291: *
  292:                A( I+1, I ) = ONE
  293: *
  294: *              Compute  x := tau * A * v  storing y in TAU(i:n-1)
  295: *
  296:                CALL DSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
  297:      $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
  298: *
  299: *              Compute  w := x - 1/2 * tau * (x**T * v) * v
  300: *
  301:                ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, A( I+1, I ),
  302:      $                 1 )
  303:                CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
  304: *
  305: *              Apply the transformation as a rank-2 update:
  306: *                 A := A - v * w**T - w * v**T
  307: *
  308:                CALL DSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
  309:      $                     A( I+1, I+1 ), LDA )
  310: *
  311:                A( I+1, I ) = E( I )
  312:             END IF
  313:             D( I ) = A( I, I )
  314:             TAU( I ) = TAUI
  315:    20    CONTINUE
  316:          D( N ) = A( N, N )
  317:       END IF
  318: *
  319:       RETURN
  320: *
  321: *     End of DSYTD2
  322: *
  323:       END

CVSweb interface <joel.bertrand@systella.fr>