Annotation of rpl/lapack/lapack/dsytd2.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            INFO, LDA, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAU( * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
                     20: *  form T by an orthogonal similarity transformation: Q' * A * Q = T.
                     21: *
                     22: *  Arguments
                     23: *  =========
                     24: *
                     25: *  UPLO    (input) CHARACTER*1
                     26: *          Specifies whether the upper or lower triangular part of the
                     27: *          symmetric matrix A is stored:
                     28: *          = 'U':  Upper triangular
                     29: *          = 'L':  Lower triangular
                     30: *
                     31: *  N       (input) INTEGER
                     32: *          The order of the matrix A.  N >= 0.
                     33: *
                     34: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     35: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     36: *          n-by-n upper triangular part of A contains the upper
                     37: *          triangular part of the matrix A, and the strictly lower
                     38: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     39: *          leading n-by-n lower triangular part of A contains the lower
                     40: *          triangular part of the matrix A, and the strictly upper
                     41: *          triangular part of A is not referenced.
                     42: *          On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     43: *          of A are overwritten by the corresponding elements of the
                     44: *          tridiagonal matrix T, and the elements above the first
                     45: *          superdiagonal, with the array TAU, represent the orthogonal
                     46: *          matrix Q as a product of elementary reflectors; if UPLO
                     47: *          = 'L', the diagonal and first subdiagonal of A are over-
                     48: *          written by the corresponding elements of the tridiagonal
                     49: *          matrix T, and the elements below the first subdiagonal, with
                     50: *          the array TAU, represent the orthogonal matrix Q as a product
                     51: *          of elementary reflectors. See Further Details.
                     52: *
                     53: *  LDA     (input) INTEGER
                     54: *          The leading dimension of the array A.  LDA >= max(1,N).
                     55: *
                     56: *  D       (output) DOUBLE PRECISION array, dimension (N)
                     57: *          The diagonal elements of the tridiagonal matrix T:
                     58: *          D(i) = A(i,i).
                     59: *
                     60: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
                     61: *          The off-diagonal elements of the tridiagonal matrix T:
                     62: *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
                     63: *
                     64: *  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
                     65: *          The scalar factors of the elementary reflectors (see Further
                     66: *          Details).
                     67: *
                     68: *  INFO    (output) INTEGER
                     69: *          = 0:  successful exit
                     70: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     71: *
                     72: *  Further Details
                     73: *  ===============
                     74: *
                     75: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
                     76: *  reflectors
                     77: *
                     78: *     Q = H(n-1) . . . H(2) H(1).
                     79: *
                     80: *  Each H(i) has the form
                     81: *
                     82: *     H(i) = I - tau * v * v'
                     83: *
                     84: *  where tau is a real scalar, and v is a real vector with
                     85: *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
                     86: *  A(1:i-1,i+1), and tau in TAU(i).
                     87: *
                     88: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
                     89: *  reflectors
                     90: *
                     91: *     Q = H(1) H(2) . . . H(n-1).
                     92: *
                     93: *  Each H(i) has the form
                     94: *
                     95: *     H(i) = I - tau * v * v'
                     96: *
                     97: *  where tau is a real scalar, and v is a real vector with
                     98: *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
                     99: *  and tau in TAU(i).
                    100: *
                    101: *  The contents of A on exit are illustrated by the following examples
                    102: *  with n = 5:
                    103: *
                    104: *  if UPLO = 'U':                       if UPLO = 'L':
                    105: *
                    106: *    (  d   e   v2  v3  v4 )              (  d                  )
                    107: *    (      d   e   v3  v4 )              (  e   d              )
                    108: *    (          d   e   v4 )              (  v1  e   d          )
                    109: *    (              d   e  )              (  v1  v2  e   d      )
                    110: *    (                  d  )              (  v1  v2  v3  e   d  )
                    111: *
                    112: *  where d and e denote diagonal and off-diagonal elements of T, and vi
                    113: *  denotes an element of the vector defining H(i).
                    114: *
                    115: *  =====================================================================
                    116: *
                    117: *     .. Parameters ..
                    118:       DOUBLE PRECISION   ONE, ZERO, HALF
                    119:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0,
                    120:      $                   HALF = 1.0D0 / 2.0D0 )
                    121: *     ..
                    122: *     .. Local Scalars ..
                    123:       LOGICAL            UPPER
                    124:       INTEGER            I
                    125:       DOUBLE PRECISION   ALPHA, TAUI
                    126: *     ..
                    127: *     .. External Subroutines ..
                    128:       EXTERNAL           DAXPY, DLARFG, DSYMV, DSYR2, XERBLA
                    129: *     ..
                    130: *     .. External Functions ..
                    131:       LOGICAL            LSAME
                    132:       DOUBLE PRECISION   DDOT
                    133:       EXTERNAL           LSAME, DDOT
                    134: *     ..
                    135: *     .. Intrinsic Functions ..
                    136:       INTRINSIC          MAX, MIN
                    137: *     ..
                    138: *     .. Executable Statements ..
                    139: *
                    140: *     Test the input parameters
                    141: *
                    142:       INFO = 0
                    143:       UPPER = LSAME( UPLO, 'U' )
                    144:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    145:          INFO = -1
                    146:       ELSE IF( N.LT.0 ) THEN
                    147:          INFO = -2
                    148:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    149:          INFO = -4
                    150:       END IF
                    151:       IF( INFO.NE.0 ) THEN
                    152:          CALL XERBLA( 'DSYTD2', -INFO )
                    153:          RETURN
                    154:       END IF
                    155: *
                    156: *     Quick return if possible
                    157: *
                    158:       IF( N.LE.0 )
                    159:      $   RETURN
                    160: *
                    161:       IF( UPPER ) THEN
                    162: *
                    163: *        Reduce the upper triangle of A
                    164: *
                    165:          DO 10 I = N - 1, 1, -1
                    166: *
                    167: *           Generate elementary reflector H(i) = I - tau * v * v'
                    168: *           to annihilate A(1:i-1,i+1)
                    169: *
                    170:             CALL DLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
                    171:             E( I ) = A( I, I+1 )
                    172: *
                    173:             IF( TAUI.NE.ZERO ) THEN
                    174: *
                    175: *              Apply H(i) from both sides to A(1:i,1:i)
                    176: *
                    177:                A( I, I+1 ) = ONE
                    178: *
                    179: *              Compute  x := tau * A * v  storing x in TAU(1:i)
                    180: *
                    181:                CALL DSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
                    182:      $                     TAU, 1 )
                    183: *
                    184: *              Compute  w := x - 1/2 * tau * (x'*v) * v
                    185: *
                    186:                ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, A( 1, I+1 ), 1 )
                    187:                CALL DAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
                    188: *
                    189: *              Apply the transformation as a rank-2 update:
                    190: *                 A := A - v * w' - w * v'
                    191: *
                    192:                CALL DSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
                    193:      $                     LDA )
                    194: *
                    195:                A( I, I+1 ) = E( I )
                    196:             END IF
                    197:             D( I+1 ) = A( I+1, I+1 )
                    198:             TAU( I ) = TAUI
                    199:    10    CONTINUE
                    200:          D( 1 ) = A( 1, 1 )
                    201:       ELSE
                    202: *
                    203: *        Reduce the lower triangle of A
                    204: *
                    205:          DO 20 I = 1, N - 1
                    206: *
                    207: *           Generate elementary reflector H(i) = I - tau * v * v'
                    208: *           to annihilate A(i+2:n,i)
                    209: *
                    210:             CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
                    211:      $                   TAUI )
                    212:             E( I ) = A( I+1, I )
                    213: *
                    214:             IF( TAUI.NE.ZERO ) THEN
                    215: *
                    216: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
                    217: *
                    218:                A( I+1, I ) = ONE
                    219: *
                    220: *              Compute  x := tau * A * v  storing y in TAU(i:n-1)
                    221: *
                    222:                CALL DSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
                    223:      $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
                    224: *
                    225: *              Compute  w := x - 1/2 * tau * (x'*v) * v
                    226: *
                    227:                ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, A( I+1, I ),
                    228:      $                 1 )
                    229:                CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
                    230: *
                    231: *              Apply the transformation as a rank-2 update:
                    232: *                 A := A - v * w' - w * v'
                    233: *
                    234:                CALL DSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
                    235:      $                     A( I+1, I+1 ), LDA )
                    236: *
                    237:                A( I+1, I ) = E( I )
                    238:             END IF
                    239:             D( I ) = A( I, I )
                    240:             TAU( I ) = TAUI
                    241:    20    CONTINUE
                    242:          D( N ) = A( N, N )
                    243:       END IF
                    244: *
                    245:       RETURN
                    246: *
                    247: *     End of DSYTD2
                    248: *
                    249:       END

CVSweb interface <joel.bertrand@systella.fr>