Annotation of rpl/lapack/lapack/dsytd2.f, revision 1.15

1.12      bertrand    1: *> \brief \b DSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSYTD2 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytd2.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytd2.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytd2.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAU( * )
                     29: *       ..
                     30: *  
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
                     38: *> form T by an orthogonal similarity transformation: Q**T * A * Q = T.
                     39: *> \endverbatim
                     40: *
                     41: *  Arguments:
                     42: *  ==========
                     43: *
                     44: *> \param[in] UPLO
                     45: *> \verbatim
                     46: *>          UPLO is CHARACTER*1
                     47: *>          Specifies whether the upper or lower triangular part of the
                     48: *>          symmetric matrix A is stored:
                     49: *>          = 'U':  Upper triangular
                     50: *>          = 'L':  Lower triangular
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>          The order of the matrix A.  N >= 0.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in,out] A
                     60: *> \verbatim
                     61: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     62: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     63: *>          n-by-n upper triangular part of A contains the upper
                     64: *>          triangular part of the matrix A, and the strictly lower
                     65: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     66: *>          leading n-by-n lower triangular part of A contains the lower
                     67: *>          triangular part of the matrix A, and the strictly upper
                     68: *>          triangular part of A is not referenced.
                     69: *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     70: *>          of A are overwritten by the corresponding elements of the
                     71: *>          tridiagonal matrix T, and the elements above the first
                     72: *>          superdiagonal, with the array TAU, represent the orthogonal
                     73: *>          matrix Q as a product of elementary reflectors; if UPLO
                     74: *>          = 'L', the diagonal and first subdiagonal of A are over-
                     75: *>          written by the corresponding elements of the tridiagonal
                     76: *>          matrix T, and the elements below the first subdiagonal, with
                     77: *>          the array TAU, represent the orthogonal matrix Q as a product
                     78: *>          of elementary reflectors. See Further Details.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] LDA
                     82: *> \verbatim
                     83: *>          LDA is INTEGER
                     84: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] D
                     88: *> \verbatim
                     89: *>          D is DOUBLE PRECISION array, dimension (N)
                     90: *>          The diagonal elements of the tridiagonal matrix T:
                     91: *>          D(i) = A(i,i).
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[out] E
                     95: *> \verbatim
                     96: *>          E is DOUBLE PRECISION array, dimension (N-1)
                     97: *>          The off-diagonal elements of the tridiagonal matrix T:
                     98: *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] TAU
                    102: *> \verbatim
                    103: *>          TAU is DOUBLE PRECISION array, dimension (N-1)
                    104: *>          The scalar factors of the elementary reflectors (see Further
                    105: *>          Details).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] INFO
                    109: *> \verbatim
                    110: *>          INFO is INTEGER
                    111: *>          = 0:  successful exit
                    112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    113: *> \endverbatim
                    114: *
                    115: *  Authors:
                    116: *  ========
                    117: *
                    118: *> \author Univ. of Tennessee 
                    119: *> \author Univ. of California Berkeley 
                    120: *> \author Univ. of Colorado Denver 
                    121: *> \author NAG Ltd. 
                    122: *
1.12      bertrand  123: *> \date September 2012
1.9       bertrand  124: *
                    125: *> \ingroup doubleSYcomputational
                    126: *
                    127: *> \par Further Details:
                    128: *  =====================
                    129: *>
                    130: *> \verbatim
                    131: *>
                    132: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
                    133: *>  reflectors
                    134: *>
                    135: *>     Q = H(n-1) . . . H(2) H(1).
                    136: *>
                    137: *>  Each H(i) has the form
                    138: *>
                    139: *>     H(i) = I - tau * v * v**T
                    140: *>
                    141: *>  where tau is a real scalar, and v is a real vector with
                    142: *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
                    143: *>  A(1:i-1,i+1), and tau in TAU(i).
                    144: *>
                    145: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
                    146: *>  reflectors
                    147: *>
                    148: *>     Q = H(1) H(2) . . . H(n-1).
                    149: *>
                    150: *>  Each H(i) has the form
                    151: *>
                    152: *>     H(i) = I - tau * v * v**T
                    153: *>
                    154: *>  where tau is a real scalar, and v is a real vector with
                    155: *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
                    156: *>  and tau in TAU(i).
                    157: *>
                    158: *>  The contents of A on exit are illustrated by the following examples
                    159: *>  with n = 5:
                    160: *>
                    161: *>  if UPLO = 'U':                       if UPLO = 'L':
                    162: *>
                    163: *>    (  d   e   v2  v3  v4 )              (  d                  )
                    164: *>    (      d   e   v3  v4 )              (  e   d              )
                    165: *>    (          d   e   v4 )              (  v1  e   d          )
                    166: *>    (              d   e  )              (  v1  v2  e   d      )
                    167: *>    (                  d  )              (  v1  v2  v3  e   d  )
                    168: *>
                    169: *>  where d and e denote diagonal and off-diagonal elements of T, and vi
                    170: *>  denotes an element of the vector defining H(i).
                    171: *> \endverbatim
                    172: *>
                    173: *  =====================================================================
1.1       bertrand  174:       SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
                    175: *
1.12      bertrand  176: *  -- LAPACK computational routine (version 3.4.2) --
1.1       bertrand  177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12      bertrand  179: *     September 2012
1.1       bertrand  180: *
                    181: *     .. Scalar Arguments ..
                    182:       CHARACTER          UPLO
                    183:       INTEGER            INFO, LDA, N
                    184: *     ..
                    185: *     .. Array Arguments ..
                    186:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAU( * )
                    187: *     ..
                    188: *
                    189: *  =====================================================================
                    190: *
                    191: *     .. Parameters ..
                    192:       DOUBLE PRECISION   ONE, ZERO, HALF
                    193:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0,
                    194:      $                   HALF = 1.0D0 / 2.0D0 )
                    195: *     ..
                    196: *     .. Local Scalars ..
                    197:       LOGICAL            UPPER
                    198:       INTEGER            I
                    199:       DOUBLE PRECISION   ALPHA, TAUI
                    200: *     ..
                    201: *     .. External Subroutines ..
                    202:       EXTERNAL           DAXPY, DLARFG, DSYMV, DSYR2, XERBLA
                    203: *     ..
                    204: *     .. External Functions ..
                    205:       LOGICAL            LSAME
                    206:       DOUBLE PRECISION   DDOT
                    207:       EXTERNAL           LSAME, DDOT
                    208: *     ..
                    209: *     .. Intrinsic Functions ..
                    210:       INTRINSIC          MAX, MIN
                    211: *     ..
                    212: *     .. Executable Statements ..
                    213: *
                    214: *     Test the input parameters
                    215: *
                    216:       INFO = 0
                    217:       UPPER = LSAME( UPLO, 'U' )
                    218:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    219:          INFO = -1
                    220:       ELSE IF( N.LT.0 ) THEN
                    221:          INFO = -2
                    222:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    223:          INFO = -4
                    224:       END IF
                    225:       IF( INFO.NE.0 ) THEN
                    226:          CALL XERBLA( 'DSYTD2', -INFO )
                    227:          RETURN
                    228:       END IF
                    229: *
                    230: *     Quick return if possible
                    231: *
                    232:       IF( N.LE.0 )
                    233:      $   RETURN
                    234: *
                    235:       IF( UPPER ) THEN
                    236: *
                    237: *        Reduce the upper triangle of A
                    238: *
                    239:          DO 10 I = N - 1, 1, -1
                    240: *
1.8       bertrand  241: *           Generate elementary reflector H(i) = I - tau * v * v**T
1.1       bertrand  242: *           to annihilate A(1:i-1,i+1)
                    243: *
                    244:             CALL DLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
                    245:             E( I ) = A( I, I+1 )
                    246: *
                    247:             IF( TAUI.NE.ZERO ) THEN
                    248: *
                    249: *              Apply H(i) from both sides to A(1:i,1:i)
                    250: *
                    251:                A( I, I+1 ) = ONE
                    252: *
                    253: *              Compute  x := tau * A * v  storing x in TAU(1:i)
                    254: *
                    255:                CALL DSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
                    256:      $                     TAU, 1 )
                    257: *
1.8       bertrand  258: *              Compute  w := x - 1/2 * tau * (x**T * v) * v
1.1       bertrand  259: *
                    260:                ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, A( 1, I+1 ), 1 )
                    261:                CALL DAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
                    262: *
                    263: *              Apply the transformation as a rank-2 update:
1.8       bertrand  264: *                 A := A - v * w**T - w * v**T
1.1       bertrand  265: *
                    266:                CALL DSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
                    267:      $                     LDA )
                    268: *
                    269:                A( I, I+1 ) = E( I )
                    270:             END IF
                    271:             D( I+1 ) = A( I+1, I+1 )
                    272:             TAU( I ) = TAUI
                    273:    10    CONTINUE
                    274:          D( 1 ) = A( 1, 1 )
                    275:       ELSE
                    276: *
                    277: *        Reduce the lower triangle of A
                    278: *
                    279:          DO 20 I = 1, N - 1
                    280: *
1.8       bertrand  281: *           Generate elementary reflector H(i) = I - tau * v * v**T
1.1       bertrand  282: *           to annihilate A(i+2:n,i)
                    283: *
                    284:             CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
                    285:      $                   TAUI )
                    286:             E( I ) = A( I+1, I )
                    287: *
                    288:             IF( TAUI.NE.ZERO ) THEN
                    289: *
                    290: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
                    291: *
                    292:                A( I+1, I ) = ONE
                    293: *
                    294: *              Compute  x := tau * A * v  storing y in TAU(i:n-1)
                    295: *
                    296:                CALL DSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
                    297:      $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
                    298: *
1.8       bertrand  299: *              Compute  w := x - 1/2 * tau * (x**T * v) * v
1.1       bertrand  300: *
                    301:                ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, A( I+1, I ),
                    302:      $                 1 )
                    303:                CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
                    304: *
                    305: *              Apply the transformation as a rank-2 update:
1.8       bertrand  306: *                 A := A - v * w**T - w * v**T
1.1       bertrand  307: *
                    308:                CALL DSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
                    309:      $                     A( I+1, I+1 ), LDA )
                    310: *
                    311:                A( I+1, I ) = E( I )
                    312:             END IF
                    313:             D( I ) = A( I, I )
                    314:             TAU( I ) = TAUI
                    315:    20    CONTINUE
                    316:          D( N ) = A( N, N )
                    317:       END IF
                    318: *
                    319:       RETURN
                    320: *
                    321: *     End of DSYTD2
                    322: *
                    323:       END

CVSweb interface <joel.bertrand@systella.fr>