Annotation of rpl/lapack/lapack/dsytd2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       CHARACTER          UPLO
        !            10:       INTEGER            INFO, LDA, N
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAU( * )
        !            14: *     ..
        !            15: *
        !            16: *  Purpose
        !            17: *  =======
        !            18: *
        !            19: *  DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
        !            20: *  form T by an orthogonal similarity transformation: Q' * A * Q = T.
        !            21: *
        !            22: *  Arguments
        !            23: *  =========
        !            24: *
        !            25: *  UPLO    (input) CHARACTER*1
        !            26: *          Specifies whether the upper or lower triangular part of the
        !            27: *          symmetric matrix A is stored:
        !            28: *          = 'U':  Upper triangular
        !            29: *          = 'L':  Lower triangular
        !            30: *
        !            31: *  N       (input) INTEGER
        !            32: *          The order of the matrix A.  N >= 0.
        !            33: *
        !            34: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            35: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
        !            36: *          n-by-n upper triangular part of A contains the upper
        !            37: *          triangular part of the matrix A, and the strictly lower
        !            38: *          triangular part of A is not referenced.  If UPLO = 'L', the
        !            39: *          leading n-by-n lower triangular part of A contains the lower
        !            40: *          triangular part of the matrix A, and the strictly upper
        !            41: *          triangular part of A is not referenced.
        !            42: *          On exit, if UPLO = 'U', the diagonal and first superdiagonal
        !            43: *          of A are overwritten by the corresponding elements of the
        !            44: *          tridiagonal matrix T, and the elements above the first
        !            45: *          superdiagonal, with the array TAU, represent the orthogonal
        !            46: *          matrix Q as a product of elementary reflectors; if UPLO
        !            47: *          = 'L', the diagonal and first subdiagonal of A are over-
        !            48: *          written by the corresponding elements of the tridiagonal
        !            49: *          matrix T, and the elements below the first subdiagonal, with
        !            50: *          the array TAU, represent the orthogonal matrix Q as a product
        !            51: *          of elementary reflectors. See Further Details.
        !            52: *
        !            53: *  LDA     (input) INTEGER
        !            54: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            55: *
        !            56: *  D       (output) DOUBLE PRECISION array, dimension (N)
        !            57: *          The diagonal elements of the tridiagonal matrix T:
        !            58: *          D(i) = A(i,i).
        !            59: *
        !            60: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
        !            61: *          The off-diagonal elements of the tridiagonal matrix T:
        !            62: *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
        !            63: *
        !            64: *  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
        !            65: *          The scalar factors of the elementary reflectors (see Further
        !            66: *          Details).
        !            67: *
        !            68: *  INFO    (output) INTEGER
        !            69: *          = 0:  successful exit
        !            70: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            71: *
        !            72: *  Further Details
        !            73: *  ===============
        !            74: *
        !            75: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
        !            76: *  reflectors
        !            77: *
        !            78: *     Q = H(n-1) . . . H(2) H(1).
        !            79: *
        !            80: *  Each H(i) has the form
        !            81: *
        !            82: *     H(i) = I - tau * v * v'
        !            83: *
        !            84: *  where tau is a real scalar, and v is a real vector with
        !            85: *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
        !            86: *  A(1:i-1,i+1), and tau in TAU(i).
        !            87: *
        !            88: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
        !            89: *  reflectors
        !            90: *
        !            91: *     Q = H(1) H(2) . . . H(n-1).
        !            92: *
        !            93: *  Each H(i) has the form
        !            94: *
        !            95: *     H(i) = I - tau * v * v'
        !            96: *
        !            97: *  where tau is a real scalar, and v is a real vector with
        !            98: *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
        !            99: *  and tau in TAU(i).
        !           100: *
        !           101: *  The contents of A on exit are illustrated by the following examples
        !           102: *  with n = 5:
        !           103: *
        !           104: *  if UPLO = 'U':                       if UPLO = 'L':
        !           105: *
        !           106: *    (  d   e   v2  v3  v4 )              (  d                  )
        !           107: *    (      d   e   v3  v4 )              (  e   d              )
        !           108: *    (          d   e   v4 )              (  v1  e   d          )
        !           109: *    (              d   e  )              (  v1  v2  e   d      )
        !           110: *    (                  d  )              (  v1  v2  v3  e   d  )
        !           111: *
        !           112: *  where d and e denote diagonal and off-diagonal elements of T, and vi
        !           113: *  denotes an element of the vector defining H(i).
        !           114: *
        !           115: *  =====================================================================
        !           116: *
        !           117: *     .. Parameters ..
        !           118:       DOUBLE PRECISION   ONE, ZERO, HALF
        !           119:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0,
        !           120:      $                   HALF = 1.0D0 / 2.0D0 )
        !           121: *     ..
        !           122: *     .. Local Scalars ..
        !           123:       LOGICAL            UPPER
        !           124:       INTEGER            I
        !           125:       DOUBLE PRECISION   ALPHA, TAUI
        !           126: *     ..
        !           127: *     .. External Subroutines ..
        !           128:       EXTERNAL           DAXPY, DLARFG, DSYMV, DSYR2, XERBLA
        !           129: *     ..
        !           130: *     .. External Functions ..
        !           131:       LOGICAL            LSAME
        !           132:       DOUBLE PRECISION   DDOT
        !           133:       EXTERNAL           LSAME, DDOT
        !           134: *     ..
        !           135: *     .. Intrinsic Functions ..
        !           136:       INTRINSIC          MAX, MIN
        !           137: *     ..
        !           138: *     .. Executable Statements ..
        !           139: *
        !           140: *     Test the input parameters
        !           141: *
        !           142:       INFO = 0
        !           143:       UPPER = LSAME( UPLO, 'U' )
        !           144:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           145:          INFO = -1
        !           146:       ELSE IF( N.LT.0 ) THEN
        !           147:          INFO = -2
        !           148:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           149:          INFO = -4
        !           150:       END IF
        !           151:       IF( INFO.NE.0 ) THEN
        !           152:          CALL XERBLA( 'DSYTD2', -INFO )
        !           153:          RETURN
        !           154:       END IF
        !           155: *
        !           156: *     Quick return if possible
        !           157: *
        !           158:       IF( N.LE.0 )
        !           159:      $   RETURN
        !           160: *
        !           161:       IF( UPPER ) THEN
        !           162: *
        !           163: *        Reduce the upper triangle of A
        !           164: *
        !           165:          DO 10 I = N - 1, 1, -1
        !           166: *
        !           167: *           Generate elementary reflector H(i) = I - tau * v * v'
        !           168: *           to annihilate A(1:i-1,i+1)
        !           169: *
        !           170:             CALL DLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
        !           171:             E( I ) = A( I, I+1 )
        !           172: *
        !           173:             IF( TAUI.NE.ZERO ) THEN
        !           174: *
        !           175: *              Apply H(i) from both sides to A(1:i,1:i)
        !           176: *
        !           177:                A( I, I+1 ) = ONE
        !           178: *
        !           179: *              Compute  x := tau * A * v  storing x in TAU(1:i)
        !           180: *
        !           181:                CALL DSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
        !           182:      $                     TAU, 1 )
        !           183: *
        !           184: *              Compute  w := x - 1/2 * tau * (x'*v) * v
        !           185: *
        !           186:                ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, A( 1, I+1 ), 1 )
        !           187:                CALL DAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
        !           188: *
        !           189: *              Apply the transformation as a rank-2 update:
        !           190: *                 A := A - v * w' - w * v'
        !           191: *
        !           192:                CALL DSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
        !           193:      $                     LDA )
        !           194: *
        !           195:                A( I, I+1 ) = E( I )
        !           196:             END IF
        !           197:             D( I+1 ) = A( I+1, I+1 )
        !           198:             TAU( I ) = TAUI
        !           199:    10    CONTINUE
        !           200:          D( 1 ) = A( 1, 1 )
        !           201:       ELSE
        !           202: *
        !           203: *        Reduce the lower triangle of A
        !           204: *
        !           205:          DO 20 I = 1, N - 1
        !           206: *
        !           207: *           Generate elementary reflector H(i) = I - tau * v * v'
        !           208: *           to annihilate A(i+2:n,i)
        !           209: *
        !           210:             CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
        !           211:      $                   TAUI )
        !           212:             E( I ) = A( I+1, I )
        !           213: *
        !           214:             IF( TAUI.NE.ZERO ) THEN
        !           215: *
        !           216: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
        !           217: *
        !           218:                A( I+1, I ) = ONE
        !           219: *
        !           220: *              Compute  x := tau * A * v  storing y in TAU(i:n-1)
        !           221: *
        !           222:                CALL DSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
        !           223:      $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
        !           224: *
        !           225: *              Compute  w := x - 1/2 * tau * (x'*v) * v
        !           226: *
        !           227:                ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, A( I+1, I ),
        !           228:      $                 1 )
        !           229:                CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
        !           230: *
        !           231: *              Apply the transformation as a rank-2 update:
        !           232: *                 A := A - v * w' - w * v'
        !           233: *
        !           234:                CALL DSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
        !           235:      $                     A( I+1, I+1 ), LDA )
        !           236: *
        !           237:                A( I+1, I ) = E( I )
        !           238:             END IF
        !           239:             D( I ) = A( I, I )
        !           240:             TAU( I ) = TAUI
        !           241:    20    CONTINUE
        !           242:          D( N ) = A( N, N )
        !           243:       END IF
        !           244: *
        !           245:       RETURN
        !           246: *
        !           247: *     End of DSYTD2
        !           248: *
        !           249:       END

CVSweb interface <joel.bertrand@systella.fr>