File:  [local] / rpl / lapack / lapack / dsysvxx.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:27 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
    2:      $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
    3:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
    4:      $                    NPARAMS, PARAMS, WORK, IWORK, INFO )
    5: *
    6: *     -- LAPACK routine (version 3.2.2)                               --
    7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    9: *     -- June 2010                                                    --
   10: *
   11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   13: *
   14:       IMPLICIT NONE
   15: *     ..
   16: *     .. Scalar Arguments ..
   17:       CHARACTER          EQUED, FACT, UPLO
   18:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   19:      $                   N_ERR_BNDS
   20:       DOUBLE PRECISION   RCOND, RPVGRW
   21: *     ..
   22: *     .. Array Arguments ..
   23:       INTEGER            IPIV( * ), IWORK( * )
   24:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   25:      $                   X( LDX, * ), WORK( * )
   26:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
   27:      $                   ERR_BNDS_NORM( NRHS, * ),
   28:      $                   ERR_BNDS_COMP( NRHS, * )
   29: *     ..
   30: *
   31: *     Purpose
   32: *     =======
   33: *
   34: *     DSYSVXX uses the diagonal pivoting factorization to compute the
   35: *     solution to a double precision system of linear equations A * X = B, where A
   36: *     is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices.
   37: *
   38: *     If requested, both normwise and maximum componentwise error bounds
   39: *     are returned. DSYSVXX will return a solution with a tiny
   40: *     guaranteed error (O(eps) where eps is the working machine
   41: *     precision) unless the matrix is very ill-conditioned, in which
   42: *     case a warning is returned. Relevant condition numbers also are
   43: *     calculated and returned.
   44: *
   45: *     DSYSVXX accepts user-provided factorizations and equilibration
   46: *     factors; see the definitions of the FACT and EQUED options.
   47: *     Solving with refinement and using a factorization from a previous
   48: *     DSYSVXX call will also produce a solution with either O(eps)
   49: *     errors or warnings, but we cannot make that claim for general
   50: *     user-provided factorizations and equilibration factors if they
   51: *     differ from what DSYSVXX would itself produce.
   52: *
   53: *     Description
   54: *     ===========
   55: *
   56: *     The following steps are performed:
   57: *
   58: *     1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   59: *     the system:
   60: *
   61: *       diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
   62: *
   63: *     Whether or not the system will be equilibrated depends on the
   64: *     scaling of the matrix A, but if equilibration is used, A is
   65: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   66: *
   67: *     2. If FACT = 'N' or 'E', the LU decomposition is used to factor
   68: *     the matrix A (after equilibration if FACT = 'E') as
   69: *
   70: *        A = U * D * U**T,  if UPLO = 'U', or
   71: *        A = L * D * L**T,  if UPLO = 'L',
   72: *
   73: *     where U (or L) is a product of permutation and unit upper (lower)
   74: *     triangular matrices, and D is symmetric and block diagonal with
   75: *     1-by-1 and 2-by-2 diagonal blocks.
   76: *
   77: *     3. If some D(i,i)=0, so that D is exactly singular, then the
   78: *     routine returns with INFO = i. Otherwise, the factored form of A
   79: *     is used to estimate the condition number of the matrix A (see
   80: *     argument RCOND).  If the reciprocal of the condition number is
   81: *     less than machine precision, the routine still goes on to solve
   82: *     for X and compute error bounds as described below.
   83: *
   84: *     4. The system of equations is solved for X using the factored form
   85: *     of A.
   86: *
   87: *     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
   88: *     the routine will use iterative refinement to try to get a small
   89: *     error and error bounds.  Refinement calculates the residual to at
   90: *     least twice the working precision.
   91: *
   92: *     6. If equilibration was used, the matrix X is premultiplied by
   93: *     diag(R) so that it solves the original system before
   94: *     equilibration.
   95: *
   96: *     Arguments
   97: *     =========
   98: *
   99: *     Some optional parameters are bundled in the PARAMS array.  These
  100: *     settings determine how refinement is performed, but often the
  101: *     defaults are acceptable.  If the defaults are acceptable, users
  102: *     can pass NPARAMS = 0 which prevents the source code from accessing
  103: *     the PARAMS argument.
  104: *
  105: *     FACT    (input) CHARACTER*1
  106: *     Specifies whether or not the factored form of the matrix A is
  107: *     supplied on entry, and if not, whether the matrix A should be
  108: *     equilibrated before it is factored.
  109: *       = 'F':  On entry, AF and IPIV contain the factored form of A.
  110: *               If EQUED is not 'N', the matrix A has been
  111: *               equilibrated with scaling factors given by S.
  112: *               A, AF, and IPIV are not modified.
  113: *       = 'N':  The matrix A will be copied to AF and factored.
  114: *       = 'E':  The matrix A will be equilibrated if necessary, then
  115: *               copied to AF and factored.
  116: *
  117: *     UPLO    (input) CHARACTER*1
  118: *       = 'U':  Upper triangle of A is stored;
  119: *       = 'L':  Lower triangle of A is stored.
  120: *
  121: *     N       (input) INTEGER
  122: *     The number of linear equations, i.e., the order of the
  123: *     matrix A.  N >= 0.
  124: *
  125: *     NRHS    (input) INTEGER
  126: *     The number of right hand sides, i.e., the number of columns
  127: *     of the matrices B and X.  NRHS >= 0.
  128: *
  129: *     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
  130: *     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
  131: *     upper triangular part of A contains the upper triangular
  132: *     part of the matrix A, and the strictly lower triangular
  133: *     part of A is not referenced.  If UPLO = 'L', the leading
  134: *     N-by-N lower triangular part of A contains the lower
  135: *     triangular part of the matrix A, and the strictly upper
  136: *     triangular part of A is not referenced.
  137: *
  138: *     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  139: *     diag(S)*A*diag(S).
  140: *
  141: *     LDA     (input) INTEGER
  142: *     The leading dimension of the array A.  LDA >= max(1,N).
  143: *
  144: *     AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
  145: *     If FACT = 'F', then AF is an input argument and on entry
  146: *     contains the block diagonal matrix D and the multipliers
  147: *     used to obtain the factor U or L from the factorization A =
  148: *     U*D*U**T or A = L*D*L**T as computed by DSYTRF.
  149: *
  150: *     If FACT = 'N', then AF is an output argument and on exit
  151: *     returns the block diagonal matrix D and the multipliers
  152: *     used to obtain the factor U or L from the factorization A =
  153: *     U*D*U**T or A = L*D*L**T.
  154: *
  155: *     LDAF    (input) INTEGER
  156: *     The leading dimension of the array AF.  LDAF >= max(1,N).
  157: *
  158: *     IPIV    (input or output) INTEGER array, dimension (N)
  159: *     If FACT = 'F', then IPIV is an input argument and on entry
  160: *     contains details of the interchanges and the block
  161: *     structure of D, as determined by DSYTRF.  If IPIV(k) > 0,
  162: *     then rows and columns k and IPIV(k) were interchanged and
  163: *     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
  164: *     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
  165: *     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
  166: *     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
  167: *     then rows and columns k+1 and -IPIV(k) were interchanged
  168: *     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  169: *
  170: *     If FACT = 'N', then IPIV is an output argument and on exit
  171: *     contains details of the interchanges and the block
  172: *     structure of D, as determined by DSYTRF.
  173: *
  174: *     EQUED   (input or output) CHARACTER*1
  175: *     Specifies the form of equilibration that was done.
  176: *       = 'N':  No equilibration (always true if FACT = 'N').
  177: *       = 'Y':  Both row and column equilibration, i.e., A has been
  178: *               replaced by diag(S) * A * diag(S).
  179: *     EQUED is an input argument if FACT = 'F'; otherwise, it is an
  180: *     output argument.
  181: *
  182: *     S       (input or output) DOUBLE PRECISION array, dimension (N)
  183: *     The scale factors for A.  If EQUED = 'Y', A is multiplied on
  184: *     the left and right by diag(S).  S is an input argument if FACT =
  185: *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  186: *     = 'Y', each element of S must be positive.  If S is output, each
  187: *     element of S is a power of the radix. If S is input, each element
  188: *     of S should be a power of the radix to ensure a reliable solution
  189: *     and error estimates. Scaling by powers of the radix does not cause
  190: *     rounding errors unless the result underflows or overflows.
  191: *     Rounding errors during scaling lead to refining with a matrix that
  192: *     is not equivalent to the input matrix, producing error estimates
  193: *     that may not be reliable.
  194: *
  195: *     B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
  196: *     On entry, the N-by-NRHS right hand side matrix B.
  197: *     On exit,
  198: *     if EQUED = 'N', B is not modified;
  199: *     if EQUED = 'Y', B is overwritten by diag(S)*B;
  200: *
  201: *     LDB     (input) INTEGER
  202: *     The leading dimension of the array B.  LDB >= max(1,N).
  203: *
  204: *     X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  205: *     If INFO = 0, the N-by-NRHS solution matrix X to the original
  206: *     system of equations.  Note that A and B are modified on exit if
  207: *     EQUED .ne. 'N', and the solution to the equilibrated system is
  208: *     inv(diag(S))*X.
  209: *
  210: *     LDX     (input) INTEGER
  211: *     The leading dimension of the array X.  LDX >= max(1,N).
  212: *
  213: *     RCOND   (output) DOUBLE PRECISION
  214: *     Reciprocal scaled condition number.  This is an estimate of the
  215: *     reciprocal Skeel condition number of the matrix A after
  216: *     equilibration (if done).  If this is less than the machine
  217: *     precision (in particular, if it is zero), the matrix is singular
  218: *     to working precision.  Note that the error may still be small even
  219: *     if this number is very small and the matrix appears ill-
  220: *     conditioned.
  221: *
  222: *     RPVGRW  (output) DOUBLE PRECISION
  223: *     Reciprocal pivot growth.  On exit, this contains the reciprocal
  224: *     pivot growth factor norm(A)/norm(U). The "max absolute element"
  225: *     norm is used.  If this is much less than 1, then the stability of
  226: *     the LU factorization of the (equilibrated) matrix A could be poor.
  227: *     This also means that the solution X, estimated condition numbers,
  228: *     and error bounds could be unreliable. If factorization fails with
  229: *     0<INFO<=N, then this contains the reciprocal pivot growth factor
  230: *     for the leading INFO columns of A.
  231: *
  232: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  233: *     Componentwise relative backward error.  This is the
  234: *     componentwise relative backward error of each solution vector X(j)
  235: *     (i.e., the smallest relative change in any element of A or B that
  236: *     makes X(j) an exact solution).
  237: *
  238: *     N_ERR_BNDS (input) INTEGER
  239: *     Number of error bounds to return for each right hand side
  240: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  241: *     ERR_BNDS_COMP below.
  242: *
  243: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  244: *     For each right-hand side, this array contains information about
  245: *     various error bounds and condition numbers corresponding to the
  246: *     normwise relative error, which is defined as follows:
  247: *
  248: *     Normwise relative error in the ith solution vector:
  249: *             max_j (abs(XTRUE(j,i) - X(j,i)))
  250: *            ------------------------------
  251: *                  max_j abs(X(j,i))
  252: *
  253: *     The array is indexed by the type of error information as described
  254: *     below. There currently are up to three pieces of information
  255: *     returned.
  256: *
  257: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  258: *     right-hand side.
  259: *
  260: *     The second index in ERR_BNDS_NORM(:,err) contains the following
  261: *     three fields:
  262: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  263: *              reciprocal condition number is less than the threshold
  264: *              sqrt(n) * dlamch('Epsilon').
  265: *
  266: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  267: *              almost certainly within a factor of 10 of the true error
  268: *              so long as the next entry is greater than the threshold
  269: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
  270: *              be trusted if the previous boolean is true.
  271: *
  272: *     err = 3  Reciprocal condition number: Estimated normwise
  273: *              reciprocal condition number.  Compared with the threshold
  274: *              sqrt(n) * dlamch('Epsilon') to determine if the error
  275: *              estimate is "guaranteed". These reciprocal condition
  276: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  277: *              appropriately scaled matrix Z.
  278: *              Let Z = S*A, where S scales each row by a power of the
  279: *              radix so all absolute row sums of Z are approximately 1.
  280: *
  281: *     See Lapack Working Note 165 for further details and extra
  282: *     cautions.
  283: *
  284: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  285: *     For each right-hand side, this array contains information about
  286: *     various error bounds and condition numbers corresponding to the
  287: *     componentwise relative error, which is defined as follows:
  288: *
  289: *     Componentwise relative error in the ith solution vector:
  290: *                    abs(XTRUE(j,i) - X(j,i))
  291: *             max_j ----------------------
  292: *                         abs(X(j,i))
  293: *
  294: *     The array is indexed by the right-hand side i (on which the
  295: *     componentwise relative error depends), and the type of error
  296: *     information as described below. There currently are up to three
  297: *     pieces of information returned for each right-hand side. If
  298: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  299: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  300: *     the first (:,N_ERR_BNDS) entries are returned.
  301: *
  302: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  303: *     right-hand side.
  304: *
  305: *     The second index in ERR_BNDS_COMP(:,err) contains the following
  306: *     three fields:
  307: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  308: *              reciprocal condition number is less than the threshold
  309: *              sqrt(n) * dlamch('Epsilon').
  310: *
  311: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  312: *              almost certainly within a factor of 10 of the true error
  313: *              so long as the next entry is greater than the threshold
  314: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
  315: *              be trusted if the previous boolean is true.
  316: *
  317: *     err = 3  Reciprocal condition number: Estimated componentwise
  318: *              reciprocal condition number.  Compared with the threshold
  319: *              sqrt(n) * dlamch('Epsilon') to determine if the error
  320: *              estimate is "guaranteed". These reciprocal condition
  321: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  322: *              appropriately scaled matrix Z.
  323: *              Let Z = S*(A*diag(x)), where x is the solution for the
  324: *              current right-hand side and S scales each row of
  325: *              A*diag(x) by a power of the radix so all absolute row
  326: *              sums of Z are approximately 1.
  327: *
  328: *     See Lapack Working Note 165 for further details and extra
  329: *     cautions.
  330: *
  331: *     NPARAMS (input) INTEGER
  332: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
  333: *     PARAMS array is never referenced and default values are used.
  334: *
  335: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
  336: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
  337: *     that entry will be filled with default value used for that
  338: *     parameter.  Only positions up to NPARAMS are accessed; defaults
  339: *     are used for higher-numbered parameters.
  340: *
  341: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  342: *            refinement or not.
  343: *         Default: 1.0D+0
  344: *            = 0.0 : No refinement is performed, and no error bounds are
  345: *                    computed.
  346: *            = 1.0 : Use the extra-precise refinement algorithm.
  347: *              (other values are reserved for future use)
  348: *
  349: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  350: *            computations allowed for refinement.
  351: *         Default: 10
  352: *         Aggressive: Set to 100 to permit convergence using approximate
  353: *                     factorizations or factorizations other than LU. If
  354: *                     the factorization uses a technique other than
  355: *                     Gaussian elimination, the guarantees in
  356: *                     err_bnds_norm and err_bnds_comp may no longer be
  357: *                     trustworthy.
  358: *
  359: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  360: *            will attempt to find a solution with small componentwise
  361: *            relative error in the double-precision algorithm.  Positive
  362: *            is true, 0.0 is false.
  363: *         Default: 1.0 (attempt componentwise convergence)
  364: *
  365: *     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
  366: *
  367: *     IWORK   (workspace) INTEGER array, dimension (N)
  368: *
  369: *     INFO    (output) INTEGER
  370: *       = 0:  Successful exit. The solution to every right-hand side is
  371: *         guaranteed.
  372: *       < 0:  If INFO = -i, the i-th argument had an illegal value
  373: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  374: *         has been completed, but the factor U is exactly singular, so
  375: *         the solution and error bounds could not be computed. RCOND = 0
  376: *         is returned.
  377: *       = N+J: The solution corresponding to the Jth right-hand side is
  378: *         not guaranteed. The solutions corresponding to other right-
  379: *         hand sides K with K > J may not be guaranteed as well, but
  380: *         only the first such right-hand side is reported. If a small
  381: *         componentwise error is not requested (PARAMS(3) = 0.0) then
  382: *         the Jth right-hand side is the first with a normwise error
  383: *         bound that is not guaranteed (the smallest J such
  384: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  385: *         the Jth right-hand side is the first with either a normwise or
  386: *         componentwise error bound that is not guaranteed (the smallest
  387: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  388: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  389: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  390: *         about all of the right-hand sides check ERR_BNDS_NORM or
  391: *         ERR_BNDS_COMP.
  392: *
  393: *     ==================================================================
  394: *
  395: *     .. Parameters ..
  396:       DOUBLE PRECISION   ZERO, ONE
  397:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  398:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  399:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  400:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  401:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  402:      $                   BERR_I = 3 )
  403:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  404:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  405:      $                   PIV_GROWTH_I = 9 )
  406: *     ..
  407: *     .. Local Scalars ..
  408:       LOGICAL            EQUIL, NOFACT, RCEQU
  409:       INTEGER            INFEQU, J
  410:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
  411: *     ..
  412: *     .. External Functions ..
  413:       EXTERNAL           LSAME, DLAMCH, DLA_SYRPVGRW
  414:       LOGICAL            LSAME
  415:       DOUBLE PRECISION   DLAMCH, DLA_SYRPVGRW
  416: *     ..
  417: *     .. External Subroutines ..
  418:       EXTERNAL           DSYCON, DSYEQUB, DSYTRF, DSYTRS,
  419:      $                   DLACPY, DLAQSY, XERBLA, DLASCL2, DSYRFSX
  420: *     ..
  421: *     .. Intrinsic Functions ..
  422:       INTRINSIC          MAX, MIN
  423: *     ..
  424: *     .. Executable Statements ..
  425: *
  426:       INFO = 0
  427:       NOFACT = LSAME( FACT, 'N' )
  428:       EQUIL = LSAME( FACT, 'E' )
  429:       SMLNUM = DLAMCH( 'Safe minimum' )
  430:       BIGNUM = ONE / SMLNUM
  431:       IF( NOFACT .OR. EQUIL ) THEN
  432:          EQUED = 'N'
  433:          RCEQU = .FALSE.
  434:       ELSE
  435:          RCEQU = LSAME( EQUED, 'Y' )
  436:       ENDIF
  437: *
  438: *     Default is failure.  If an input parameter is wrong or
  439: *     factorization fails, make everything look horrible.  Only the
  440: *     pivot growth is set here, the rest is initialized in DSYRFSX.
  441: *
  442:       RPVGRW = ZERO
  443: *
  444: *     Test the input parameters.  PARAMS is not tested until DSYRFSX.
  445: *
  446:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
  447:      $     LSAME( FACT, 'F' ) ) THEN
  448:          INFO = -1
  449:       ELSE IF( .NOT.LSAME(UPLO, 'U') .AND.
  450:      $         .NOT.LSAME(UPLO, 'L') ) THEN
  451:          INFO = -2
  452:       ELSE IF( N.LT.0 ) THEN
  453:          INFO = -3
  454:       ELSE IF( NRHS.LT.0 ) THEN
  455:          INFO = -4
  456:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  457:          INFO = -6
  458:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  459:          INFO = -8
  460:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  461:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  462:          INFO = -9
  463:       ELSE
  464:          IF ( RCEQU ) THEN
  465:             SMIN = BIGNUM
  466:             SMAX = ZERO
  467:             DO 10 J = 1, N
  468:                SMIN = MIN( SMIN, S( J ) )
  469:                SMAX = MAX( SMAX, S( J ) )
  470:  10         CONTINUE
  471:             IF( SMIN.LE.ZERO ) THEN
  472:                INFO = -10
  473:             ELSE IF( N.GT.0 ) THEN
  474:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  475:             ELSE
  476:                SCOND = ONE
  477:             END IF
  478:          END IF
  479:          IF( INFO.EQ.0 ) THEN
  480:             IF( LDB.LT.MAX( 1, N ) ) THEN
  481:                INFO = -12
  482:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  483:                INFO = -14
  484:             END IF
  485:          END IF
  486:       END IF
  487: *
  488:       IF( INFO.NE.0 ) THEN
  489:          CALL XERBLA( 'DSYSVXX', -INFO )
  490:          RETURN
  491:       END IF
  492: *
  493:       IF( EQUIL ) THEN
  494: *
  495: *     Compute row and column scalings to equilibrate the matrix A.
  496: *
  497:          CALL DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
  498:          IF( INFEQU.EQ.0 ) THEN
  499: *
  500: *     Equilibrate the matrix.
  501: *
  502:             CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  503:             RCEQU = LSAME( EQUED, 'Y' )
  504:          END IF
  505:       END IF
  506: *
  507: *     Scale the right-hand side.
  508: *
  509:       IF( RCEQU ) CALL DLASCL2( N, NRHS, S, B, LDB )
  510: *
  511:       IF( NOFACT .OR. EQUIL ) THEN
  512: *
  513: *        Compute the LDL^T or UDU^T factorization of A.
  514: *
  515:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  516:          CALL DSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
  517: *
  518: *        Return if INFO is non-zero.
  519: *
  520:          IF( INFO.GT.0 ) THEN
  521: *
  522: *           Pivot in column INFO is exactly 0
  523: *           Compute the reciprocal pivot growth factor of the
  524: *           leading rank-deficient INFO columns of A.
  525: *
  526:             IF ( N.GT.0 )
  527:      $           RPVGRW = DLA_SYRPVGRW(UPLO, N, INFO, A, LDA, AF,
  528:      $           LDAF, IPIV, WORK )
  529:             RETURN
  530:          END IF
  531:       END IF
  532: *
  533: *     Compute the reciprocal pivot growth factor RPVGRW.
  534: *
  535:       IF ( N.GT.0 )
  536:      $     RPVGRW = DLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
  537:      $     IPIV, WORK )
  538: *
  539: *     Compute the solution matrix X.
  540: *
  541:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  542:       CALL DSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  543: *
  544: *     Use iterative refinement to improve the computed solution and
  545: *     compute error bounds and backward error estimates for it.
  546: *
  547:       CALL DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
  548:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
  549:      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
  550: *
  551: *     Scale solutions.
  552: *
  553:       IF ( RCEQU ) THEN
  554:          CALL DLASCL2 ( N, NRHS, S, X, LDX )
  555:       END IF
  556: *
  557:       RETURN
  558: *
  559: *     End of DSYSVXX
  560: *
  561:       END

CVSweb interface <joel.bertrand@systella.fr>